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Abstract

'- In non-strict functional languages, a data structure may be read before all its components
are written, and a function may return a value before finishing all its computation or even
before all its arguments have been evaluated. Such flexibility gives expressive power to the
programmer, but makes life difficult for the compiler because it may not be possible to totally
order instructions at compile time; the correct order can vary dramatically with the input data.
Presently, compilers for non-strict languages rely on lazy evaluation, in which a subexpression
is not evaluated until known (at run time) to contribute to the final answer. By scheduling
each subexpression separately, lazy evaluation automatically deals with the varying orderings
required by non-strictness, but at the same time incurs a great deal of overhead. Recent
research has employed strictness analysis and/or annotations to make more scheduling decisions
at compile time, and thereby reduce the overhead, but because these techniques seek to retain
laziness they are limited in effectiveness.

We present an alternative compilation strategy which deals with non-strictness independent of
laziness, through the analysis of data dependence. Our analysis determines which instructions
can be ordered at compile time and which must be scheduled at run time in order to implement
non-strictness properly. We then have the option of imposing laziness or ignoring it-and we find
that choosing the latter path can lead to significantly reduced overhead. Abandoning laziness
means certain programs (those which use "infinite objects") may fail to terminate properly. We
suspect that non-strictness and not the ability to handle infinite objects is the more important
feature for the programmer; nevertheless, we can provide some annotations to the programmer

k to achieve termination in the presence of infinite objects. Even with annotations, our approach
entails less overhead.

W, d -. uc strategy in the context of both sequential implementations and parallel imple-
mentations where the object code is partially sequentialized. We also show how lazy code can
be generated from our framework. '

Key Words and Phrases: Compilers, Dependence Graphs, Functional Languages, Functional
Quads, Lazy Evaluation, Lenient Evaluation, Multi-Threaded, Non-Strictness, Partitioning of
Programs.
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Chapter 1

Introduction

In non-strict functional languages, a data structure may be read before all its components

are written, and a function may return a value before finishing all its computation or even

before all its arguments have been evaluated. Such flexibility gives expressive power to the

programmer, but makes life difficult for the compiler because it may not be possible to totally

order instructions at compile time; the correct order can vary dramatically with the input data.

Presently, compilers for non-strict languages rely on lazy evaluation, in which a subexpression

is not evaluated until known (at run time) to contribute to the final answer. By scheduling

each subexpression separately, lazy evaluation automatically deals with the varying orderings

required by non-strictness, but at the same time incurs a great deal of overhead. Recent

research hu employed strictness analysis and/or annotations to make more scheduling decisions

at compile time, and thereby reduce the overhead, but because these techniques seek to retain

laziness, they are limited in effectiveness.

We present an alternative compilation strategy which deals with non-strictness independent

of laziness, through the analysis of data dependence. Our analysis determines which instructions

can be ordered at compile time and which must be scheduled at run time in order to implement

non-strictness properly. We then have the option of imposing laziness or ignoring it-and we find

that choosing the latter path can lead to significantly reduced overhead. Abandoning laziness

means certain programs (those which use "infinite objects") may fail to terminate properly. We

suspect that non-strictness and not the ability to handle infinite objects is the more important

feature for the programmer; nevertheless, we can provide some annotations to the programmer

to achieve termination in the presence of infinite objects. Even with annotations, our approach

entails les overhead.

.... . . . -- " a mint ad m [ n i ~ t i •9



We discuss our strategy in the context of both sequential implementations and parallel

implementations where the object code is partially sequentialized. We also show how lazy code

can be generated from our framework.

The guiding principle behind the compilation method presented in this thesis is simply that

compilation is a process of choosing the order in which subexpressions will be evaluated. Unlike

imperative programs, functional programs do not give any explicit indication of subexpression

ordering; this is why they are termed "declarative". But sequential code is by definition ordered,

so if sequential code is to be produced from functional programs, the compiler must take

ordering decisions. A compiler must perform considerable analysis to make these decisions

correctly, because this ordering information is not explicit in the source code-this sort of

analysis is the heart of any compiler for a non-strict functional language. Existing functional

language compilers perform this analysis indirectly, by attempting to emulate an evaluator

for the language which executes subexpressions in proper sequence. In contrast we attack

the ordering issue head on, and consequently we are able to achieve a much cleaner separation

between describing the behavior object code must exhibit to faithfully implement the semantics

and developing techniques to achieve that behavior on the target architecture. We find that

non-strict object code can be described abstractly as a set of sequential threads, each internally

nrdered but whose relative order with respect to other threads is determined at run time.

We then formulate the conversion of a source program into these sequential threads as first

determining the constraints on thread construction imposed by the language semantics, and

then partitioning the original program into threads based on these constraints. From there, the

abstract threads may be converted into concrete object code for a particular target architecture,

given the execution mechanisms it provides.

In presenting the conversion from source program to sequential threads we have tried to

balance the desire for mathematical rigor against the need for practical techniques. We actu-

ally present two parallel developments of the method. The first consists of a formal operational

semantics of functional languages called functional quads and a formal theory of requirement

which characterizes the ordering relationships that must hold for a program to satisfy the se-

mantics. In this mathematical world we are able to capture the essential constraints that object

code must satisfy, independent of any particular analysis technique a compiler might employ to

infer them. The second development presents a complete example of techniques that could form

the basis of a real compiler, in which ordering relationships are inferred through the analysis

10



of data dependence. Each stage of the practical method is proved safe relative to the standard

provided by the theoretical model, through a well-defined notion of approximation. Require-

ment theory therefore provides strong assurances about the correctness of actual compilation

methods, and is also a way of formally characterizing the concept of data dependence.

The remainder of this chapter describes some notational conventions used in this thesis.

Chapter 2 sets the stage by reviewing the current state of the art in functional language com-

piling, including strict and lazy evaluation. Chapter 3 illustrates the kind of code generated

by conventional techniques and by our techniques, comparing the overhead. In the next two

chapters we lay the theoretical foundations of our method: we present the functional quads op-

erational semantics of non-strict programs in Chapter 4 and develop the theory of requirement

and compiling into sequential threads in Chapter 5. The parallel to the theoretical development

in Chapter 5 is found in the next two chapters; in Chapter 6 we discuss the analysis of data

dependence and in Chapter 7 we describe algorithms for using data dependence information to

partition a program into sequential threads. Chapter 8 completes the description of a practi-

cal compiler by considering the conversion of sequential threads into actual object code for a

variety of implementations, both sequential and parallel, along with optimization. Chapter 9

concludes.

1.1 Notation: Functional Programs

Modern functional programming languages have a number of advanced features, including pat-

tern matching, powerful iteration facilities, algebraic and abstract data types, and type inference

systems. Functional programming examples in this thesis will be presented in a minimal kernel

language, which we describe here. This language is sort of the "least common denominator" of

such common non-strict functional languages as Miranda 174], LML [10], and the forthcoming

Haskell [76]; it includes numbers, simple data structures, arithmetic expressions, conditional

expressions, curried function application, and lexical scoping through "letrec" blocks. All of the

advanced features mentioned above can be expressed in the kernel language through source-

to-source transformations. The issues related to type systems, too, are absent in the kernel

language, for we can assume that type-checking is done before conversion to the kernel lan-

guage. The concrete syntax of the kernel language is patterned after Id Nouveau [53], but

this is not meant to imply that Id syntax has any particular advantages over the syntax of
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other languages. The kernel used here simply has an uncluttered, easy-to-read appearance in

Id syntax.

The grammar of our language is given below.

Expression Number I Boolean I Identifier I Expression Op Expression I
if Expression then Expression else Expression I
Expression Expression I Block I (Expression)

Op + *I-I*II--I <...
Block ::= { Binding ; Binding ; ... in Expression I
Binding ::= Identifier - Expression I Identifier Identifier ... - Expression

A brief description of these features:

Application Function application is written by juxtaposition, so if f is a function of three

arguments, and g a function of two, a legal expression is:

f S (g x 3) y

where the second argument of f is the result of applying g to x and 3. Functions in Id

are curried, so that a partial application like (g 5) is simply a function of one argument

which calls g on 5 and that argument. Application, therefore, associates to the left.

Infix Expressions To improve the readability of arithmetic expressions, infix notation is pro-

vided as a syntactic sugar for the application of arithmetic, relational, and logical primi-

tives. Thus, we have

S+y () X y

where (W) represents the primitive addition function. The usual precedence and associa-

tivity rules apply to the infix operators, with application having highest precedence.

Conditionals An expression of the form if E, then E2 else E3 evaluates to the value of

E2 or E3 , depending on whether E, evaluates to true or false, respectively.

Blocks Blocks allow names to be given to expressions; each binding introduces a new name

whose scope is the entire block. This "letrec" scoping rule allows bindings to be recursive

or mutually recursive. A binding either gives a name to the value of an expression, as in:

12



z y *5;

or defines a new function, a in:

dst z y - sqrt(z * z + y y);

In a function definition binding, the scope of the function name (the leftmost identifier)

is the whole block, while the scope of the formals (the other identifiers on the left hand

side) is only the body of the function (the right hand side). The number of formals is the

arity of the function. Functions of zero arity are not supported.

The value of a block expression is the value of the expression following the in keyword.

Primitives We assume a basic repertoire of primitive functions for manipulating the primitive

data types. We have already mentioned the arithmetic, relational, and logical operators,

for which infix syntax is provided. We also assume primitives for data structures. In gen-

eral we provide tagged n-tuples, with associated constructor functions, selector functions,

and tag predicates. Specifically, for each n-ary type t we provide:

make-t v,... v, -- (t, V1,..., n

Bol.t.i 0, Vi,...,9 i,...,9 ) --) Vi

i V -- true if V 0, V1,... -, n)
I f lZso otherwise

0-ary types are supported; they have no selectors, and instead of a constructor function

there is just a constant.

For convenience, we will often make use of the 2-ary "cons" type, with constructor cons,

selectors hd and tl, and predicate cons?, along with the 0-ary nil and its predicate nil?.

1.2 Notation: Sets, Relations, and Graphs

Given a set A, a binary relation I- on A is a subset of A x A; we write ao I- a, if (ao, a,) E -.

We also write ao .o ao, and ao .i+' ai+l if ao l-i ai and ai - ai+i. We write ao P. a, if ao t"° a,
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or ao I- a,, a0 i- + a, if ao I-' al for some i > 0, and ao F- al if ao -' al for some i > 0; -,

F-+, and F-* are called the reflexive closure, the transitive closure, and the reflexive transitive

closure of I-, respectively. A relation is reflexive (transitive) if it is equal to its own reflexive

(transitive) closure. Given a subset A' C A, the restriction of a relation to this subset, notation

(F I A'), is the set i- n (A' x A').

A directed graph 2 is an ordered pair (V, E) where E C V x V; V is the set of vertices,

and E the set of edges. Because we will have many graphs with the same vertex set, we use

a non-standard convention whereby the graph is represented by the edge set symbol with an

arrow on top. Since the edge set is a binary relation on the vertices, all of the terminology in

E 1 Ethe preceding paragraph applies. We use the notation u ---- + to indicate that (u, v) E E, and

so u -E i v, u - ,a v, u -_E++ v, and u v " indicate that between u and v there is a path

of length i, a path of length zero or one, a path of length at least one, and a path of length at

least zero, respectively. A graph is cyclic if there exists u E V such that u -_.E + u, and acyclic

otherwise. If V' C V, then (V', (E I V')) is the induced subgraph of f on V'.

An undirected graph is a graph such that for any u,v E V, if (u,v) E E, then (v,u) E E

also. We use the slightly informal notation {u, v) E E to indicate that (u, v), (v, u) E E for an

undirected graph.
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Chapter 2

Background-Functional Language
Compilers

To produce sequential object code, whether for a von Neumann architecture or a parallel archi-

tecture which executes sequential code segments in parallel, many decisions about the relative

order of subexpression evaluation must be taken at compile time. In an imperative programming

language such as Fortran, Pascal, C, etc., all of these decisions are made by the programmer

and communicated to the compiler through the textual ordering of the program. Imperative

compilers, therefore, need only worry about ordering if they wish to change the programmer's

ordering, say to perform code motion optimizations. In declarative programming languages,

however, the programmer makes no assertions about the ordering of subexpressions; instead, the

programmer describes how the results of one computation are used by another. It is up to the

compiler to choose an order which satisfies the data dependences specified by the programmer.

For functional languages, the standard practice is to define an interpreter, and generate

compiled code for a program which mimics the order of evaluation steps performed by the

interpreter on that program. There are two standard functional language interpreters, each

having a simple rule for deciding what expression to evaluate next:

The Strict Interpreter To evaluate (f el ... e,), where f has arity n, first evaluate each
of the argument expressions el through en, and then evaluate the body of f, passing the
evaluated arguments.

The Lazy Interpreter To evaluate (f el ... e,), where f has alty n, evaluate the body
of f, passing the arguments unevaluated.

Data constructors are treated like procedure calls, with the strict interpreter evaluating the

component expressions before building the structure, and the lazy interpreter leaving the com-

ponents unevaluated. The rules for letrec blocks are analogous: the strict interpreter evaluates
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the right-hand sides of the bindings before binding the variables and evaluating the final expres-

sion, while the lazy interpreter evaluates the final expression with the right-hand sides of the

bindings unevaluated (in both cases this is a little trickier than it sounds because the bindings

can refer to one another; we defer the details until the next chapter). Strict and lazy evalu-

ation are identical for the remaining language constructs: constants, identifiers, conditionals,

and arithmetic. It should be noted, however, that in lazy evaluation an identifier might be

bound to an unevaluated expression. Simply referring to such an identifier does not evaluate

the expression, but if the argument to an arithmetic operation or the predicate of a conditional

is unevaluated, it must be evaluated before further progress can be made.1 The net effect in

lazy evaluation is that an expression is not evaluated before it is known to contribute to the

final answer. In place of strict and lazy are sometimes found the terms applicative-order and

normal-order, or call-by-value and call-by-need.'

We illustrate the difference between strict and lazy evaluation with a small example:

examp a b a
{f x y z - if x < 0 then y * y else z * z;

in
f a (b+4) (b-17)};

Suppose we call examp with arguments of 10 and 20. Under strict evaluation, we have a call to

internal procedure f, so we first have to evaluate its arguments, yielding 10, 24, and 3. We then

call f, which compares 10 to 0, selects the "else" clause, multiplies 3 times 3, and returns 9 as

the answer. Notice that we performed the addition (b+4) even though its value was ultimately

ignored. Under lazy evaluation, neither (b+4) nor (b-17) would be evaluated before calling f.

But once inside f, when the "else" clause has been selected, we need the value of z, so we then

perform the subtraction (b-17). The answer is the same, but we have avoided the addition

(b+4).

In some sense, the difference between strict and lazy evaluation is one of efficiency, as lazy

evaluation seeks to avoid the computation of useless intermediate results. But in fact, lazy

'In some sense, it i an implementation choice how much an argument to a primitive need be evaluated. For
example, to evaluate (x > 0) we weed only evaluate x enough to determine its sign. For pragmatic reasons, of
course, expressions denoting scalar types are generally evaluated completely when any information about their
values is needed. On the other hand, a data structure selector function will evaluate its argument only enough
to get the desired component.

'A note on usage: strict and lasi are most often used when distinguishing between evaluation rules applied
consistently in an implementation. On the other hand, caUlb -vale and call-by-need tend to be used when both
mechanisms are available in the same implementation, at the discretion of the programmer [171. Applicative-order
and normal-order are most correct when applied to lambda calculus, where they are also called lefltmost-innermost
and leftmost (or Leftmost-outermost).
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evaluation gives more expressive power to the programmer than does strict evaluation, because

there are programs which produce answers under lazy evaluation but not under strict evaluation.

The most obvious subclass of these programs are ones in which the useless intermediate results

avoided by lazy evaluation require an infinite amount of computation under strict evaluation.

An example:

{ints.froa n - cons n (intsfram (n+1));
in
nth 10 (into.from 1)}

((nth i 1) returns the ith element of list 1.) Under strict evaluation, the call to intsfrom

results in an infinite recursion, but under lazy evaluation the calls to ints-from for n larger

than 10 are not made, since they do not contribute to the final result. The utility of programs

like this which manipulate "infinite lists" was one of the earliest reasons for interest in lazy

evaluation (25]. We will have a lot more to say about the relative expressive power of various

evaluation methods in Chapter 3.

The above exposition of strict and lazy evaluation was intentionally informal, to avoid

burdening the reader with a lot of detail and notation. The reader can rest assured that we

will define them very precisely in Chapter 4; it may be worth rereading this chapter and the

next after the formal definition has been presented.

In the remainder of this chapter we focus only on how today's compilers produce object

code which mimics strict or lazy evaluation. Strict compilers draw mainly on Lisp compiler

technology, the most important aspects coming from Steele's pioneering Rabbit compiler [66]

and the later Orbit compiler [50] from Yale. The lazy approach has three substrands: force-

and-delay style compilers [29, 341, combinator and supercombinator graph reduction [72, 38],

and abstract machine based compilers (41, 431. We discuss all of these techniques below. We

are mainly concerned with strategy in this chapter; in the next we examine in detail the object

code produced from these compilers.

2.1 Strict Compilers

Most imperative programming languages have strict procedure calls, so strict functional com-

pilers have a lot in common with imperative compilers. But in functional languages, procedures

are first-class objects and may be created and manipulated more freely than in most imperative
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exaaple.a x y = exauple-b x 1 = example.c z y 
f a = a X; if a a a * ; if a - (a+x)/y;
in in g b - x/(b-y);

f (y-S)+ sap f 1}; in
f (y+8) }; cons f g;

Arguments, results, and en- Downward-only procedure: Procedures share environ-
vironment in registers. environment on stack. ment for x and y on heap.

(a) (b) (c)

Figure 2.1: Procedure Linkage Optimization by Orbit

languages. Not surprisingly, then, strict functional compilers are based on compilers developed

for Lisp and its variants, as procedures are also first-class in Lisp. Lisp-like languages have a

well-defined functional subset, and so Lisp compiler technology carries over directly into the

functional regime. The first compiler to concentrate on efficient implementation of first-class

procedures was the Rabbit compiler [66], developed for the Scheme dialect of Lisp [59]. Rabbit

technology was subsequently refined and put into operation by the Orbit compiler [50].

The two main innovations in these compilers were the use of the continuation passing style

(CPS) transformation [67, 65] and efficient procedure construction and invocation. The CPS

transformation is used to express a variety of complex imperative control constructs in terms

of procedure calling; since these imperative constructs are absent in functional languages, CPS

is not of great interest here. In a functional context, all CPS accomplishes is fixing the relative

ordering in which arguments to the same procedure are evaluated.

Efficient handling of procedures, on the other hand, is critically important to functional

compilation, because first-class procedures are heavily used in the functional programming

style. The overhead associated with procedures and procedure calls stems from parameter

(and result) passing and from the use of free variables bound in enclosing lexical scopes (the

"environment"). The environment problem has two sides: the values of free variables must be

recorded at the time the procedure is created, and they must be accessed when the procedure

is called. The main insight in Rabbit/Orbit is that there need not be a uniform convention for

parameter passing, nor for environment representation; instead, these can be customized for

efficiency on a procedure by procedure basis. Among the customizations:

* If all callers of a procedure can be identified and are in the same activation as where
the procedure is created, then parameters, results, and the environment can be passed in
registers rather than on the stack. (Figure 2.1a)
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AMASp? Force and Delay Schemae Object
WPr-Processing Transformation ict) Orbit '

(w/ Strictne sr)H_ ___ ___
Figure 2.2: Force-and-Delay Lazy Compilation: the ALFL Compiler

" If a procedure can only be accessed by its creating activation and that activation's de-
scendants (i.e., if the procedure does not "escape upward"), then the procedure can be
compiled to fetch its environment variables from the stack, as in Algol. This saves the
overhead of constructing the environment, since the stack is already there. (Figure 2.1b)

" If a procedure escapes upward, then the environment must be allocated on the heap. If
several procedures are created in the same activation, however, it may be possible to share
their environments or a portion thereof, or share them with their parent. (Figure 2.1c)

With these and other procedure-calling optimizations, Orbit is able to achieve superior per-

formance compared with other compilers, especially for programs which make heavy use of

procedures [50].

Lisp and strict functional language compilers also face the problems of register allocation,

optimization, etc., faced by compilers for languages such as Fortran, C, and Pascal. We will not

delve into these issues, as they are adequately described elsewhere [3], and are not significantly

different in the functional context.

2.2 Lazy Compilers: Force-and-Delay

As we discussed earlier, lazy evaluation requires that argument expressions be passed to proce-

dures unevaluated, and that primitives like arithmetic must cause such unevaluated expressions

to be evaluated. By introducing unevaluated expressions as first-class objects into the language,

Henderson [29] developed a source-to-source transformation which makes explicit where expres-

sions are delayed and where the delayed expressions are to be evaluated. The transformed code

can be executed using strict evaluation, but will behave as if executed under lazy evaluation.

The ALFL compiler (34] uses this transformation to convert programs written in a lazy func-

tional language, ALFL, into Scheme, which is then compiled into object code by Orbit (see

Figure 2.2). 3

3
1n [34), the ALFL compiler in described as a combinator-based compiler. In fact, it only uses combinators

as an intermediate form for doing optimizations like common subexpression elimination, constant folding, and
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Basic Transformation Rules
el e2 - (force e1L) (delay e2 )
if el then e2 else C3 -- if (force el) then e2 else C3
{xl a ei; (xl = (delay el);

xn a e.; xn - (delay ef);
in in

ein} ein}

Implementation of Primitive Functions
cons x y = conS y
hd x = hdS (force x) similarly for tl
x + y = (force x) +3 (force y) similarly for -,e,>, etc.

Derived Transformation Rules
cons el e2  -- conss (delay el) (delay e2)
hd el -- hd$ (force ei) similarly for ti
el + e2 -* (force el) +S (force e2) similarly for -, *, >, etc.
f e1 "--en -* f (delay ei) ... (delay e,,) ifI's arity is n
f el ...ei-leiei+l ... en f (delay el) -..

(delay ei- 1 ) ei (delay ei+i)
... (delay e,,) if f is strict in its ith argument

Note: The S superscript indicates a strict primitive.

Figure 2.3: Conversion of Lazy Programs to Strict Programs

Henderson's transformation is summarized in Figure 2.3. (delay e) is not a procedure

application, but is instead a special form which evaluates to an unevaluated representation of e

called a thunk.4 As we mentioned before, thunks are first-class objects and may be passed

freely between procedures, stored in data structures, etc. The force procedure takes an object,

and if it is a thunk, evaluates the unevaluated expression recorded in the thunk, repeating the

process as necessary to obtain a non-thunk value. To achieve anything approaching efficiency,

force must also memoize the value of the thunk so that later forces of the same thunk will

simply fetch the memoized value. Without being any more specific about the representation of

a thunk, we note that a thunk must carry a proper environment for evaluating e, if e has any

free variables.

The overhead of performing lazy evaluation compared to strict evaluation is directly reflected

inline substitution. After these optimisations the combinator code is translated back into lambda-expressions;
this whole process is shown as pre-processing" in Figure 2.2. In effect, the pre-processing phase is just source-
to-source optimization, which happens to use combinators internally.

'Also called a promise, recipe, or a closure. We will use the term closure in a broader sense, referring to the
code/environment pair compiled from any lexicaly nested procedure delinition, whether part of a thunk or not.
The term promise will be given a special meaning in Chapter 8 as a placeholder for an unevaluated value.
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by the appearance of force and delay in the transformed code. Wherever a delay appears,

the compiled program must include code to allocate storage for the thunk (enough to hold a

pointer to the code for e, a pointer to its environment, and later, its evaluated value) and code

to construct the thunk's environment. Wherever a force appears, there must be code to check

whether the value being forced is a non-thunk value, previously evaluated thunk, or unevaluated

thunk. In the latter case, there may also be overhead in setting up the environment for the

thunk's expression, usually in the guise of saving registers or pushing stack.

Efficiency is improved, therefore, by eliminating as many forces and delays as possible.

The derived rules in Figure 2.3 are examples of this. For example, since + forces both its

arguments, there is no need to delay arguments when we can recognize a call to + is being made.

A procedure that always forces a particular argument is said to be strict in that argument.

Strictness analysis [20, 36, 16] is commonly employed to determine the strictness of user-

defined procedures; strictness information allows delays to be eliminated as illustrated by the

last derived rule in Figure 2.3. We will discuss strictness analysis and its applications in detail

in Section 2.5.

The ALFL compiler from Yale [34] is one example of a lazy compiler based directly on

the force-and-delay transformation. To implement force and delay, the ALFL compiler uses

Henderson's observation that a delayed expression may be represented as a procedure of no ar-

guments, so that forcing the expression is just calling that procedure. The resulting translation

of delay and definition of force are shown in Figure 2.4. The output of the ALFL compiler

is actually Scheme code, which is then fed to the Orbit compiler to produce object code for a

sequential machine. Notice that all of the efficient procedure call machinery in Orbit carries

over directly to the implementation of thunks in the ALFL compiler, since they are translated

into procedures before processing by Orbit. Thus, the ALFL compiler achieves excellent per-

formance relative to other lazy compilers, because Orbit is able to optimize the management of

environments for thunks.

2.3 Lazy Compilers: Graph Reduction

Graph reduction was among the earliest lazy implementations of functional languages [72), and

provided much of the impetus for research in the field. The idea in graph reduction is to translate

the original program into a combinator graph, which is "executed" by successive application of
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(delay e) -- force x =
(thunkla () = it isthunk(x) thea

U Sequential code follows. if thunk.evaluated(x) then
{val a e; fletch..aemoizdvalue(x)

(code to update thunk with val); els
return val); (thuankclosure x) () else

thunk a sk.thuak thunzkn; z
in

thunk)

Figure 2.4: Implementation of force and delay

S') Pre-Procming Abstraction bEvaluator

Figure 2.5: Graph Reduction Lazy Compilation

rewrite rules which transform the graph into the final answer. The object code from a graph

reduction compiler, therefore, is not object code for conventional hardware, but code which

must be executed by a software interpreter (see Figure 2.5). Graph reduction is of interest

here only because it forms the basis for the abstract machine compilers, to be discussed in the

next section. It should be pointed out, however, that much research effort has been devoted

to hardware architectures which directly execute combinator graphs, both uniprocessor [62, 69]

and multiprocessor [56].

Here is an example showing the reduction of the program (1 + (2 * 3)) in two steps:

3
+ 

A

• 2

The nodes of a combinator graph represent application, and since all functions are curried in

graph reduction, the first graph is just the graphical representation of ((+ 1) ((+ 2) 3)).

22



The leaves of the graph are constants, which include combinators such as . Associated with

each combinator is a reduction rule, and the reduction rule for + says that an instance of +

applied to two integers is reduced to the integer which is their sum. When a subgraph is

reduced, the reduced version replaces the original in the graph, as shown in the second graph

above. Performing the first reduction exDs another opportunity for reduction, and this

second reduction reduces the graph to tht answer. In general, there many be many reducible

subgraphs ("redexes"), and a proper choice of which to reduce at each step is necessary to

achieve lazy evaluation. The rule which corresponds directly to the rule for lazy evaluation

given on page 15 always selects the leftmost redex, which in terms of the graph is the subgraph

located closest to the bottom of the graph's "spine", which extends to the left from the root

node. More elaborate strategies are also possible [12].

In addition to primitive reduction rules such as those for +, user-defined functions can be

treated as reduction rules in their own right. Suppose we had the following program:

(f X y z - (g y (x *y));
g a b i f. a < 0 then b else 7;
in

f U 6 2) 41

This program's graph before and after the first step of reduction is shown below:

4 44

2

/ 2

Notice that the argument (/ 6 2) to f is effectively delayed, since it remains unevaluated after

the call to f is reduced. Furthermore, when it is eventually evaluated, its value will replace the

top node of the subgraph which represents it. Since the reduction of f caused the unevaluated
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subgraph to be shared, so will the result. Hence, the values of delayed expressions are memoized

when evaluated, just as they were in the force-and-delay implementation discussed earlier.

In graph reduction, all of the subexpression delaying mechanism needed to support lazy

evaluation is embedded in the graph interpreter. All the compiler must do is produce a set of

combinator reduction rules and a graph representiag the query expression. Producing combina-

tor definitions is slightly more difficult than our example above implies, for a function definition

can only be used as a reduction rule if it has no free variables. One technique for removing free

variables from a function is simply to include them in the formal parameter list and in every

reference to that function. This method is called lambda lifting (42], and is illustrated below:

fXyl= fxylW
(g a = a + y; g yy a - a + yy;

in in
(map g 1), g x}; (map (g y) 1). g y XI;

Another technique is Hughes' mfe-abstraction (381. Any technique which adds new combinators

to the set of primitives is called a supercombinator technique; it is also possible to compile a

program into a fixed set of primitive combinators [721. The fixed set approach is not of much

practical use on conventional hardware, but has been used in specialized machines where the

set of combinators can be viewed as an instruction set (46, 691.

The main difficulty with combinator approaches is that they are basically interpretive, since

they do not result in code directly executable by conventional hardware. In fact, the only

difference between graph reduction and what is normally called an interpreter is the sharing

of computation made possible by the graph representation. The desire to implement graph

reduction efficiently led to the development of abstract machine approaches, discussed next.

2.4 Lazy Compilers: Abstract Machines

Abstract machine compilation produces object code for conventional hardware which mimics the

behavior of a graph reduction interpreter, and therefore of a lazy evaluator. In graph reduction,

each combinator is a reduction rule which controls the behavior of a graph interpreter. In the

abstract machine approach, a combinator is compiled into conventional object code which

performs graph manipulations simulating an application of that combinator's reduction rule.

In effect, the graph interpreter has been compiled into the combinator definitions. The term
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SIGCde Object
Pre-Processing M) CodeH&9) Compiler Generator Code

Figure 2.6: Abstract Machine Lazy Compilation: the LML/G-Machine Compiler

"abstract machine" refers to an intermediate step in the compilation process: the program

is first compiled into code for an abstract machine whose instructions include primitives for

manipulating combinator graphs, and then from abstract instructions into conventional object

code. One well-known abstract machine compiler is the compiler for Lazy ML [10], outlined in

Figure 2.6, based on the G-machine [41] abstract machine. Another recently proposed abstract

machine is the Three Instruction Machine (TIM) [23]. In our discussion here we ignore the

intermediate code and just describe in general terms the target code produced from it.

Suppose we had this combinator definition:

where g is the name of another combinator. In graph reduction, reducing a call to f would first

rewrite the graph:

and then proceed to reduce the newly rewritten graph. The LML compiler imitates this with

the following code for f (expressed in an informal "quads" notation):

function f x, Top)

Tmpi :l mkap(g, x)
Tmp2 := mkap(Templ, x)
Ana := eval(Tsp2)
Top[*] :w An
return Ans
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Eval evaluates a graph by traveling down the spine of its argument until a the name of a

combinator is found. If its arity is satisfied, pointers to its argument graphs (found in cells

along the spine) are passed to the code for that combinator as arguments. Also passed as

argument is a pointer to the top node of the combinator call, so that it can be updated with

the answer. So the x in the code above is really a pointer to the subgraph for x, and Top points

to the original application node.

The interesting aspect of the G-machine approach is that the code for a combinator can

perform computation instead of just building graphs. Suppose that instead of (g x x), the

right hand side of f were (+ x x). With the translation given above, the code for f would

build the graph for (+ z x) and then evaluate it, ultimately causing x to be evaluated and

added to itself. The actual LML compiler would instead generate the following code:

function f (x, Top)
Tempi : eval(x)
Ans :- Tempi + Templ
Top[*] := Ans
return Aina

which just evaluates the graph for x, adds it to itself, and updates the graph.

The LML compiler was able to avoid building the graph for (4 x x) because the graph was

to be evaluated immediately after construction. Of course, graphs still need to be built when

arguments must be delayed according to the principles of lazy evaluation. Consider again the

example from page 23:

{f X y a x - (g y (X *y));
g a b - if a < 0 then b else 7;
in

f ( 6 2) 4}

In compiling f, the LML compiler would not build a graph for the subtraction, nor for the

application of g. On the other hand, a graph would be built for x xy), since that expression

might be ignored by g. Early G-machine compilation schemes would actually build a graph

containing + and * combinators. On the other hand, it has been pointed out [43, 551 that more

efficient code is possible by defining a combinator h for this subexpression:
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{t x y X i - (g y (h X y));
h X y = (x * x*y);
gab s if a< 0 then belse 7;
in

f (/ 6 2) 4}

Now, the delayed expression (x + xy) appears in the graph as (h x y), and h is compiled

into efficient code which just performs an addition and multiplication of values on the stack.

If this transformation is applied consistently, we get a new combinator like h for each delayed

subexpression, and the only graph nodes built are applications of these combinators to the

delayed expressions' free variables (which may themselves be delayed expressions).

A moment's reflection reveals that we have come full circle and arrived at nothing more or

less than a force-and-delay implementation. A delayed expression appears in the graph as a

pointer to code (the combinator) along with an environment for its free variables (the arguments

to which it is applied). So the graphs built are really just thunks. When such a graph is reduced

it is overwritten with its value, but this is equivalent to the memoization of a thunk's value

when forced. Given the high quality of target code that can be generated from G-code, it seems

that the G-Machine LML compiler can be very competitive with the force-and-delay ALFL

compiler. The same is probably true for other abstract machine based compilers.

From a pedagogical point of view, force-and-delay style lazy compilation is a bit easier to

deal with, since the force-and-delay notation is succinct and avoids extraneous notions like

combinator graphs. In the remainder of this thesis, therefore, we will take force-and-delay

compilers as representative of the state of the art in lazy compilation, knowing that the abstract

machine approach yields essentially equivalent results. In fact, the abstract machine formalism

can impose limitations on object code quality not present in the force-and-delay style. For

example, we saw in Section 2.2 how Orbit can avoid building thunk environments in the heap

when it can show that the thunk does not escape upward-it compiles the thunk to fetch its

free variables directly from its parent stack frames. There seems to be no way to accomplish

a similar optimization in the G-machine framework, because activations do not have pointers

to their parent frames. Of course, there is every reason to believe that a suitably modified

G-machine or some other abstract machine could form the basis of a compiler as good as a

force-and-delay compiler. For our purposes, the important fact is that the approaches are

essentially equivalent despite their very different appearance.
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2.5 Strictness Analysis

Delayed expressions are the principal source of overhead in lazy implementations, and so good

lazy compilers expend a lot of effort in eliminating as much delaying as possible without disturb-

ing the termination properties of the program. To discover opportunities for this optimization,

current lazy compilers rely on various forms of strictness analysis.

Strictness analysis is based on the notion of a strict function:

Definition 2.1 A function f of n arguments is strict in its ith argument if

for all

As Mycroft points out [52], if a function f is strict in its ith argument it is always safe to

evaluate that argument before calling f. Why? Assume that f(ej,... ,en) terminates; its value

is therefore greater than I. Since f is strict in its ith argument, ej must also be greater than 1.

But if ei were never evaluated by f, it would carry no more information than 1. So we conclude

that ei is always evaluated by f whenever f terminates, and so it is safe to evaluate ei before

calling f.1 On the other hand, if f does not terminate, nothing is changed by evaluating ej

early, even if ej also does not terminate.

Strictness analysis attempts to determine in which arguments, if any, the functions of a

program are strict. When compiling a call to a function, delays are eliminated -rom strict

argument positions as determined by the analysis (see the last derived rule in Figure 2.3). Of

course, strictness is an undecidable property [52], so any method of strictness analysis will be to

some degree an approximation; a great deal of research has been devoted to finding strictness

analysis methods that are more precise and/or more efficient. Mycroft's original work as well

as a number of other efforts [20, 36, 16] are based on abstract interpretation (22] of the source

program. Another approach is backwards analysis (also called context analysis), which appears

to have some practical advantages over abstract interpretation [39, 771.

If higher-order functions are allowed, strictness analysis becomes more complex. Calls where

the name of a function is syntactically applied to all arguments (i.e., a first-order call) can be
5 Actually, we can only conclude that e, can be evaluated sometime before the call to f returns. To also

conclude that ei can be evaluated before anything inside of f is computed, we must note that since f is free from
side effects, no computation within f can possibly affect ej before f returns. Evaluation of ej before f begins is
therefore indistinguishable from evaluation of ej just before f returns. Note that this is not true for non-strict
languages with side-effects like Id [53] (with unrestricted use of I-structures) or Josephs' language [45], and so
strictness is not a valid criterion for early evaluation of arguments in those languages.
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optimized as before, but a more complex analysis is needed to optimize a general application

of one expression to another. In such a situation, the delay of the argument can be removed if

it can be shown that all possible values for the function expression are strict in that argument.

Abstract interpretation methods can be extended to handle higher-order functions [36, 16],

but more work seems to be needed to make these techniques practical. It should be noted,

however, that first-order strictness analysis can be used with higher-order languages, as long as

pessimistic decisions are taken when general applications axe encountered.

A more serious shortcoming of present-day strictness analysis is its ineffectiveness on non-flat

domains (i.e., data structures). Suppose a unary function f is strict in its argument according

to the definition above, and that the argument expression e in some call to f returns a tuple.

From our previous discussion, we know that we have to get more information from e than I if

f is to terminate. Unfortunately, we do not know how much information: we could evaluate e

to (1, .), (vI,L1), (1,v2), or (tq,t2) (and of course this continues recursively if vi or V2 are

themselves data structures). We are forced to take the most conservative position and only

perform the minimum evaluation possible on e; in the force-and-delay framework, this means

we can force e before the call, but not any of its components. Putting it another way, we can

never remove delays from the arguments to a data constructor. This is a very serious defect

considering the frequency with which calls to data structures are made in typical functional

programs. Extending strictness analysis to eliminate delays from data structure creation is an

active area of research [77].

Finally, we should note that some researchers [17, 35] have proposed the use of strictness

annotations, which allow the programmer to direct the compiler to remove a particular delay

regardless of the consequences.
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Chapter 3

Lenient Evaluation

At the beginning of Chapter 2 we noted that lazy evaluation gives more expressive power to the

programmer than does strict evaluation, because there are programs which produce answers

under lazy evaluation but not under strict evaluation. As we have seen, though, this expressive

power comes at the expense of run-time overhead, in the form of delayed computation. Given

that there is a trade-off between expressiveness and efficiency, it is reasonable to ask whether

there is some other evaluation strategy which is more expressive than strict evaluation yet more

efficient than lazy evaluation.

To answer this question, we examine the ways in which lazy evaluation is more expressive

than strict evaluation. We focus first on non-strictness in lazy evaluation-the property that

arguments are passed unevaluated to procedures. We show how non-strictness allows fuller

use of recursion than is possible under strict evaluation, and therefore gives the programmer

the ability to specify more complicated patterns of data dependence. From there we see that

lazy evaluation imposes stronger constraints on evaluation than needed simply to achieve non-

strict behavior. These constraints stem from laziness, which seeks to prevent evaluation that

does not contribute to the final answer. Laziness is responsible for yet a different kind of

expressive power: the ability to manipulate "infinite" data structures. The next logical step

is to imagine implementing non-strictness but not necessarily achieving laziness. We call this

lenient evaluation, and examine how it is achieved and how it allows for reduced overhead

compared to lazy evaluation.
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3.1 Expressive Power from Non-Strictness

To illustrate how non-strictness allows a more unrestricted use of recursion, we present this

small example:

{a a cons 2 (hd a);
in

a}

We would like this program to return (2,2), but this requires that (hd a) be passed to cons

unevaluated-we cannot evaluate (hd a) before calling cons, as a has no value until cons

returns. The need for non-strictness extends to the calling of procedures, as a slight modification

of this program shows:

{f X y = cons x y;
a - f 2 (hd a);
in
a)

Neither of these programs is correctly executed by a strict interpreter, because the strict inter-

preter tries to evaluate (hd a) before a has a value. Depending on the implementation, the

strict interpreter will either complain about a being undefined, or simply deadlock.

The reader unfamiliar with strict functional languages may wonder at this point how letrec

is implemented in those languages. We quote from the Scheme manual [59]:

The [variables on the left hand sides] are bound to fresh locations holding unde-
fined values; the [expressions on the right hand sides] are evaluated in the resulting
environment (in some unspecified order); each variable is assigned to the result of
the corresponding [right hand side]; the [final expression] is evaluated in the result-
ing environment; and the value of the [final expression] is returned. Each binding of
a variable has the entire letrec expression as its region, making it possible to define
mutually recursive procedures.

One restriction on letrec is very important: it must be possible to evaluate each
[right hand side] without referring to the value of any variable. If this restriction is
violated, then the effect is undefined, and an error may be signalled during evaluation
of the [right hand sides]. . . . In the most common uses o' letrec, all the [right hand
sides] are lambda expressions and the restriction is satisfied automatically.

Lambda expressions on the right hand sides satisfy the restriction automatically because evalu-

ating them only means constructing a closure for them, requiring the locations of the left hand

side variables but not their values.
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In the rest of this section, we present some more examples of programs which exploit the

free use of recursion allowed by non-strictness; all of them make use of non-lambda right hand

sides in letrec expressions.

Before proceeding to the examples, however, we should clarify what we mean by the term

non-strictness, a term frequently used in the literature but not defined very precisely. We will

use the term to describe a particular semantic property of a functional programming language,

and by extension to describe a functional language implementation which achieves that property.

By non-strict we do not simply mean anything that is different from strict semantics; that

would not be a very useful definition. Instead, we note that the distinguishing feature of strict

semantics is that arguments to procedures and data constructors are completely evaluated

before the procedure body or data constructor is invoked. By non-strict, then, we mean that

arguments are not necessarily evaluated before a procedure or data constructor is invoked. But

more than this, we require that an implementation invoke the procedure or data constructor

before the arguments are evaluated if this is the only way progress can be made. In the example

above, progress could not be made unless cons was called before evaluating the argument (hd

a). The semantic property that thus becomes available to the programmer is the assurance

that computation will be delayed whenever necessary to allow the continued execution of the

program.

3.1.1 Cyclic Data Structures

Cyclic data structures are often useful, but are impossible to construct in a functional language

without non-strictness. Here is a simple example of constructing a circular list:

{a a cons 1 (cons 2 (cons 3 a));
in
a)

Non-strictness is required because of the reference to a on the right hand side of a's binding.

A less trivial example constructs a doubly-linked list. An ordinary list is a collection of cells,

where each cell is a two-tuple containing that cell's element and the next cell: ci = (vj,c+j).

The cells of a doubly linked list are three-tuples which contain the next cell and also the

previous cell: ci = (vi, ci-1, ci+i). The following program constructs a doubly-linked list from

an ordinary list:
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doubly-link I pre - % Initial call: (doubly-link 1 nil)
if nil? 1 then
nil

else
{this - 3_tuple (hd 1) prey next;

next = doubly-link (t1 1) this;
in
this};

Again, non-strictness allows the mutual recursion between the definitions of this and next.

3.1.2 Dynamic Programming

In dynamic programming, a table of some sort is constructed where most elements are defined

in terms of other elements already computed. Here is a program which generates a list of

factorials from 1 to n using dynamic programming:

make.fact._list n -
{fact._list - cons 1 (gen.fact..list 2 n);
gen-fact._list i n

if i > n then
nil

else
cons (i * (nth (i - 1) fact._li8t))

(gen-fact._list (i * 1) n);
in

fact..list}

Here, each element of the list is defined in terms of the previous element; this is done by using

the nth function to read the (i - 1)th element when computing the ith element. As a result,

make-fact-.list only does O(n) multiplications, compared to the 0(n 2 ) that would be required

if it simply computed i! for each value of i.

In this example, the data structure is not cyclic, but the data dependences in the program

are: fact-list's definition calls gen-fact._list, but gen-fact.list examines the value of

fact-list. The circular dependences are necessary in functioital programming, because the

programmer cannot take the imperative approach of allocating an empty structure and filling

in the components one at a time. The nearest functional equivalent of the imperative approach

would copy the entire data structure at each step, at a prohibitive cost in time and space. 1

1In some instances, the compiler could optimize the copying program into one which updates a structure in
place; see [32, 30] for details.
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Non-strictness allows the data structure to be constructed only once even though its definition

"reads itself". This dynamic programming technique shows up in such well-known examples of

functional programming as Turner's "paraffins" program [73] and the "wavefront" program for

matrices [8], and can even be used to solve the "backpatching" program cited by advocates of

logic programming [58].

The factorial example is somewhat artificial in that dynamic programming is not necessary

to generate a list of factorials efficiently:

nondynaicfactlist n a
{fact-list n (gen-factlist 1 1 n);
gen.fact.list i prod n -

if i > n then
nil

else
cons (i * prod)

(genfactlist (i + 1) (i * prod) n);
in
fact-list}

On the other hand, this kind of table generation is often programmed using bulk data construc-

tors, as in the following program which uses a general purpose make-list primitive:

yet-another-factlist n -
{fact.list = make-list f I n;
f ia

if i - 1 then
1

else
i * (nth (i-1) fact-list);

in
fact-list}

(make-list f I n) constructs alist each of whose elements is f(i), for i from 1 to n. Primitives

like this are more commonly used to construct arrays-indeed, they may be the only option

available to the functional programmer [8]-but to use these primitives efficiently, non-strictness

is once again essential.

The point of all this, of course, is not to compute factorials more efficiently, but to illustrate

how non-strictness allows more efficient programs than are possible under strict evaluation.
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3.1.3 Conditional Dependence

This program is a bit contrived, but illustrates that the applications of non-strict recursion are

not limited to data structures:

conditional.example x =
{a = if x > 0 then bb else 3;
b - if x < 0 then aa else 4;
aa a a + 5;
bb = b + 6;
in

aa+bb};

The order in which this program's subexpressions are evaluated depends on the value of x. If

x is positive, we first evaluate b (4), then bb (10), then a (10), then aa (15), and finally the

answer (25). If x is negative, however, we first evaluate a (3), then aa (8), then b (8), then bb

(14), and the answer (22).

This program has the surprising behavior that the order in which the two additions are per-

formed depends on the value of x, even though those two additions lie outside the conditionals.

3.2 Expressive Power from Laziness

In the last section, we saw that non-strictness allows more complicated patterns of data depen-

dences than are allowed under strict evaluation: we could make cyclic data structures, define

structures in terms of themselves, even have apparent cyclic data dependences that "untangle"

themselves at run time. In all of these programs, evaluation of some expressions needed to be

delayed until their evaluation was possible-strict evaluation would always try to evaluate them

too early, when some of their free variables were still undefined. Lazy evaluation delays every

expression, and delays each one until the last possible moment, when execution cannot proceed

further without it. So it should come as no surprise that all of the programs in the last section

execute correctly under lazy evaluation, since lazy evaluation will certainly introduce sufficient

delays to insure that the delayed expressions are executable. In fact, if there is any evaluation

order which will produce an answer from a program, lazy evaluation will also produce an answer

from that program [75]. So lazy evaluation enjoys all the expressive power that comes with

non-strictness.

36



But lazy evaluation provides some additional expressive power beyond that discussed in the

previous section: the power to manipulate "infinite" objects. The most famous example of this

is the functional sieve of Erastothenes for finding prime numbers. We quote the description of

the sieve given by Henderson [29]:

Make a list of the integers, commencing at 2. Repeat the following process of

marking the numbers in the list:

1. The first unmarked number of the list is prime, call it p.

2. Mark the first unmarked number in the list and each pth number thereafter
whether previously marked or not (here you are marking all multiples of p).

3. Repeat from 1.

Typically, the sieve is used to find all primes less than some number n, so the initial list is a list

from 2 to n. An imperative algorithm might start with an array, and at Step 2 scan through

the array marking off array elements (say by setting them to zero). Of course, this approach

does not carry over into the functional framework, so the usual solution uses a list of numbers,

and "marking" multiples is accomplished by making a new list with the multiples removed:

sieve 1 a
if nil? 1 then
nil

else
cons (hd 1)

(sieve (remove-multiples (hd 1) (tl 1)));

Here (remove.multiples i 1) returns a list containing those elements of input list 1 which

are not multiples of i. If we want a list of all primes less than 100, then, we need only call

sieve on a list of the integers from 2 to 100.

Now suppose that instead of all primes less than n, we want the first n primes. This is a bit

harder to do with the sieve, since we do not know how big to make the original list of integers.

Here is where lazy evaluation enters the picture: we simply start with a list of all the integers.

(intsfrom x - cons x (intsfrom (x+i));
all.primes * sieve (ints-froa 2);
in
firstnolements n all-primes}

(ints.-from 2) is a list of all integers starting with 2, and so all-primes is the list of all

the primes, from which we simply extract the first n elements. Now if we tried executing
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this program under strict evaluation, we would go into an infinite loop as we actually tried to

build the entire list of integers. But lazy evaluation does no computation not required for the

final answer, so no more than the first n elements of all-primes are evaluated, and no more

iterations of intsfrom are performed than the value of the nth prime (541, if n = 100).

This is a very different sort of expressive power than we saw in the previous section. In

that section, we saw how non-strictness allowed complicated patterns of data dependence. In

the sieve, the data dependences are straightforward, but the control flow is not. Intsfrom

appears to be an infinite loop, because there is no conditional to break the recursion. Sieve,

too, is apparently infinite: the nil? predicate in its conditional never returns true because the

input list is infinite, and so the conditional there is superfluous (and is omitted in [29]). The

control over these recursions comes not from code within the procedures themselves, but from

the procedure that reads the all-primes list, namely, first-n-elements. Lazy evaluation

has effectively induced the control structure of first.n-elements onto sieve and intsafrom.

3.3 Lenience: Non-strictness Without Laziness

We have seen that there are two distinct kinds of expressive power available in lazy evalua-

tion not found in strict evaluation. One is the ability to specify complicated patterns of data

dependence, specifically, data dependences which have the syntactic appearance of cycles but

which are resolved because they go through different components of the same data structure,

or because the cycles are broken by conditionals. The other is the ability to express compli-

cated control structure, where the execution of procedures which produce a data structure is

controlled by the procedures which use that data structure. Both require some delaying of eval-

uation: the former (non-strictness) requires that expressions be delayed until all of their input

data are available (already computed or obtainable by forcing some other delayed expressions),

while the latter (laziness) requires that they be delayed until no further progress can be made

without them. Since laziness delays expressions until the last possible moment, it automatically

introduces enough delay to achieve non-strictness. 2

2 We wish to reiterate a rather subtle point alluded to in Section 2.5. Lazy evaluation delays expressions until
the last possible moment, but with strictness analysis some arguments to some procedures may be evaluated
early, before the call is made. It is tempting to think that this works because strictness analysis shows that an
argument is always forced, i.e., known to contribute to the answer before the call is made. While this is true, a
stronger condition is required to eliminate the delay: the argument must be evaluable (have all its input data
available) before the call. As we pointed out in the footnote on page 28, if an argument is always forced it must
be evaluable before the call since no information can propagate to the argument from the call until it returns.
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We define lenient evaluation to be an evaluation strategy which achieves non-strictness but

not necessarily laziness. For the implementation, this implies that expressions must be delayed

until their input data are available, but not necessarily any longer. For the programmer, it

means unrestricted use of letrec and the attendant flexibility in data dependences, but not

the consumer-directed control structure required for the finite use of infinite data structures.

More operationally, it means that conditionals are the only means of controlling whether or not

expressions are evaluated, and should be included whenever there is the possibility of infinite

loops. The control structure available under lenient evaluation, therefore, is exactly what is

available under strict evaluation.

We should point out that strict languages like Scheme provide explicit force and delay

operators to the programmer, so that infinite object algorithms can be implemented. The same

option is available to lenient implementations. A variation is to provide explicit delays but

implicit forces, making it transparent to the consumer of a data structure whether it is infinite

or not. Programming style and methodology for lenient languages with explicit delay constructs

is a topic of current research [28].

3.3.1 An Example of Lenient Object Code

Lenient evaluation does not delay expressions as long as does lazy evaluation, so we expect

it to have less delay-related overhead. Specifically, lenient evaluation allows more delays to

be eliminated at compile time, and in other cases allows separate delayed expressions to be

combined. To illustrate, let us return to the fact-list example from Section 3.1.2.

make.fact-list n =
{fact-list = cons 1 (gen-fact-list 2 n);

gen-factlist i n =

if i > n then
nil

else
cons (i * (nth (i - 1) factlist))

(gen-fact-list i + 1) n);
in
fact.list}

Consider how a lazy compiler would compile the internal procedure gen.fact-_list. The best

lazy compiler would introduce forces and delays as follows:

The same implication does not hold for the delayed expressions of a letrec; all of the right-hand sides of the
program in Section 3.1.3 are forced, but ths y still must be delayed for the dependences to be unraveled.
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genfactlist i U -
if i > n then
nil

else
cons (delay (i * (nth (1 - 1) fact-list)))

(delay (gen-fact.list (i + 1) n));

Strictness analysis reveals nth strict in all its arguments, and gen-fact-list strict in i and n.

Thus, no delays appear in the calls to these procedures, nor is there need to force i or n (since

all calls to gen-.fact-list will evaluate them before the call). The object code generated would

be as follows (in informal "quads" notation):

function gn.fact-list (, n, fact.list)
Tempi :w i > n
if Tep1 goto Li
Ana :- allocate 2
Temp2 :- (Thunk for Thl closed over i, fact.list, An.)
Temp3 :- (Th unk for Th2 closed over i, n, An.)
Ans [l] := Tep2
Ans [2] :a Temp3
return Ans

Li: return nil

function Thl (I, fact..ist, cell)
Tempt := i- I
Temp2 : call nth(Teapl, fact.list)
Ana = j * Temp2
celll) := Ana
return An.

function Th2 i, n, cell)
TempI := i *

An :a call gen.fact-list (Tempt, n)
cell[2J := Ana
return Ann

This notation omits the details of procedure linkage and thunk representation. We assume that

the compiler chooses the best linkage and thunk representation possible (see Section 2.1), but

it should be noted that both thunks in this example escape upward, and so require expensive

heap-allocated environments.

Now consider generating lenient code for gen-fact-list. When we reach the "else" arm

of the conditional we know that the values of i and n are available, since they were needed by

the predicate. On the other hand, fact-_list is not available, since its value is computed by
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gen.fact.list and will only be available after it returns. The expression (i * (nth i - 1)

fact-.list)) must be delayed, therefore, but (gen-.fact-list (i + 1) n) need not.

gen.fact.list i n

if i > n then
nil

else
cons (delay (i * (nth i - 1) fact.list)))

(gen.fact.list (i + 1) n);

The object code is as follows:

function gen.fact-list (i, n, fact.list)
Tempi := i > n
if Tempi goto LI
Tsnp2 :i + I

Temp3 := call gen.fact-list(Temp2, n)
Ans : allocate 2
Teap4 := (Thunk for Thl closed over i, fact-list, Axis)
Axs[1] := Teup4
Arts [2 := Temp2
return Axis

LI: return nil

function Thl i, fact-list, cell)
Tempi i - I
Teap2 := call nth(Templ, fact-list)

Ans :a i * Temp2
cell[1] := Arts
return Arns

We see that for this example, lenient evaluation has removed half the overhead needed for

lazy evaluation.

3.4 Semantics or Implementation Technique?

We have discussed at length the relative expressive power of strict, lenient, and lazy implemen-

tations of functional languages. Our concern with expressive power is mainly for expository

reasons. By examining functional programs from which we expect a certain kind of behav-

ior, we can see what an implementation must do to achieve that behavior. We can then

capture the behavioral differences in succinct operational terms: lenient implementations add

non-strictness to strict implementations, lazy implementations add laziness. The operational
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notions correspond directly to kinds of expressive power: non-strictness allows more complex

data dependences, laziness allows more complex control structure. This view has allowed us

to emphasize the distinction between non-strictness and laziness, which heretofore have been

considered synonymous in the literature.

But even though strict, lenient, and lazy implementations differ in expressive power, it is not

entirely accurate to think of them as having three distinct semantics. More to the point is that

there is one semantics for functional languages, which strict, lenient, and lazy implementations

implement with varying degrees of faithfulness.3 So strict, lenient, and lazy evaluation can

be thought of as compilation techniques rather than as separate classes of languages, which

differ in their approach to subexpression scheduling. Strict compilation bases scheduling on the

syntactic call graph, lenient compilation employs an analysis of data dependence to schedule

based on availability of data, while lazy compilation schedules based on whether an expression

is needed for the final answer. As we have remarked earlier, strict, lenient, and lazy compilation

are respectively more faithful to the standard semantics, but also respectively introduce more

run-time overhead.

3.5 Compilation as Ordering: Sequential Threads

As we discussed in Chapter 2, existing lazy compilers are based on one of two approaches.

Force-and-delay compilers view compilation as introducing force and delay primitives into the

program to convert it to strict semantics. Abstract machine compilers try to generate code

which emulates the behavior of an abstract graph reduction architecture. As we have seen,

both yield approximately equivalent code, but the way in which they go about it is heavily

influenced by the basic view they take.

The starting point for the compilation method presented in this thesis is simply that com-

pilation is a process of choosing the order in which subexpressions will be evaluated. Unlike

imperative programs, functional programs do not give any explicit indication of subexpression

ordering; this is why they are termed "declarative". But sequential code is by definition or-

dered, so if sequential code is to be produced from functional programs, the compiler must take

ordering decisions. Because this ordering information is not explicit in the source code, the

3 course, it is always possible to devise a formal semaatics which exactly models a given implementation.
For example, Stoy [68] gives a semantics for strict lambda calculus through a modification to the standard
semantics which artificially 'strictifies" all lambda expressions.
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compiler must perform considerable analysis to make these decisions correctly, and in fact most

of the compiler technology that is unique to non-strict functional languages is connected with

making ordering decisions.

While sequential code demands that ordering decisions be taken at compile time, non-

strictness can require that some be deferred until run time. The program in Section 3.1.3

is a good example: the relative ordering of the two statements aa - a + 5 and bb a b +

6 depends on input data, and so the compiler cannot sequentialize them even though they lie

outside the conditionals which create the variation according to input. The product of compiling

a non-strict program, therefore, will not be a single piece of sequential code but a collection of

sequential threads.

How can we characterize a sequential thread? Certainly a sequential thread is a segment of

sequential code, where the instructions are ordered at compile time. Furthermore, the relative

order in which different threads execute is not fixed at compile time, but allowed to vary

according to input data. Of course, this description could apply as well to code segments

between conditional branch instructions in ordinary imperative code, or to code generated

for individual procedures and subroutines. The key feature is that sequential threads are

generated from program portions that do not have any explicit control transfers between them;

the run-time switching between threads is directed only by the communication of values between

threads. That is, when an executing thread needs a value that is to be computed by another

thread, it must suspend its own execution and allow that other thread to proceed. The hallmark

of sequential threads, therefore, is scheduling controlled by tests to determine whether another
subezpression has been evaluated. Code which consists of sequential threads will always make

use of presence bits of one sort or another. We will use the term "multi-threaded" to describe

object code in which a compiled procedure consists of a collection of sequential threads.

With this definition of threads in mind, the force-and-delay code produced by lazy compilers

is easily seen to be a type of multi-threaded code. Each delay results in a small piece of sequential

code, invoked when some other piece of code needs the value it computes. So thunks are just

sequential threads, and removing a delay from a subexpression amounts to embedding one

thread in another. (These comments apply equally well to abstrict machine based compilers.)

Seen in this light, strictness analysis and all of the other compilation techniques unique to lazy

evaluation are methods of producing as large threads as possible, minimizing the overhead of

switching between them.
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3.6 Code Generation Options

By taking a view of non-strict compilation as choosing a set of sequential threads for a program,

we immediately separate two classes of concern. The first is deciding what set of threads will

be produced from a given program. This is primarily a semantic issue, as the threads must

give an ordering among subexpressions which correctly implements the meaning of the program

according to the semantics. The second concern is how the multi-threaded mechanism is to be

implemented on the target architecture. These issues are mostly pragmatic; they include such

details as whether presence bits are implemented in hardware or software, whether threads may

execute concurrently, how threads are scheduled, etc. This separation is not present in existing

lazy compilers, because those compilers take as their starting point a particular implementation

of multiple threads (either as forces and delays or as abstract machine code) which fixes both

the semantics and most of the run-time mechanisms.

In contrast, the bulk of our compilation method deals with sequential threads very ab-

stractly, so that it addresses the semantic issues independent of the implementation mecha-

nisms. As we have suggested in our extensive discussion of lenient evaluation, we will describe

how to produce an appropriate set of threads for lenient semantics. Because lenient evaluation

captures the notion of non-strictness in isolation from laziness, the exposition of our compilation

method will reveal how non-strictness is responsible for most of the difficulty in taking ordering

decisions at compile time. In fact, we will show how lazy code may also be produced in our

framework, and it will simply turn out to be a further refinement of the threads produced for

lenient evaluation. In this sense, our compilation method is neutral toward the issue of lenient

vs. lazy evaluation: either option is supported.

Many options also exist in the mechanisms chosen to implement multi-threaded code. We

will discuss a number of these, including whether presence bits are in hardware or software,

whether concurrency is supported, and whether threads are scheduled eagerly or on demand.

All of these choices turn out to be more or less orthogonal, and all may be chosen independently

of whether the threads generated implement lenient or lazy semantics (although demand-driven

scheduling is required for lazy evaluation).

So we see that lenient evaluation provides not only an alternative semantics to lazy evalu-

ation, but also a completely new perspective on compiling non-strict programming languages.

With the motivation and goals of lenient evaluation firmly in mind, we proceed to the theory
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and practice of lenient compilation.

3.7 A Footnote: Non-Sequentiality

Before proceeding, we should say a word or two about non-sequential programming languages

and how they relate to our discussion of multi-threaded code. "Sequentiality" has several

different meanings, but the most relevant meaning here is Huet-L6vy sequentiality [12], which

for our purposes says that when a thread suspends for lack of some value, it can always identify

the thread which will produce that value. Without this guarantee, an implementation might

have to evaluate many threads simultaneously in order to be sure of evaluating the one which

produces the needed value; if it arbitrarily chose one to which to devote its full attention, it might

happen to choose a thread which diverges. Of course, actual parallel hardware is not needed,

but to implement a non-sequential language there must be at least a simulation of parallelism.

A well-known example of a non-sequential construct is "parallel OR', a binary function which

returns true if one of its arguments is true, even if the other argument falls to terminate. In this

thesis, however, we will only consider functional languages which are sequential in the sense of

Huet and Lvy, and so we need not worry about simulating parallelism.

One is tempted to consider the kind of multi-threaded code we have discussed as somehow

"non-sequential", since it does not consist of a single sequential thread as is found in most

programming language implementations. But, as we have seen, the use of multi-threaded code

does not imply non-sequentiality in the sense described above. It is worth noting, however, that

compiled code from a non-sequential language would likely be multi-threaded.

45



46



Chapter 4

Functional Quads

In Section 1.1 we introduced a small kernel functional language, and in Chapters 2 and 3 we

described in general terms how programs are evaluated under strict, lenient, and lazy evaluation.

We will now formalize all of this, and describe syntax and semantics very precisely.

The centerpiece of our study is a very minimal functional language which we call "functional

quads". Functional quads was designed to meet the following goals:

" It should serve as a model of both lenient and lazy evaluation; hence, it must be non-strict.

" It should have primitive constructs for each of the functional language features normally
treated as primitive by functional language implementations. Specifically, its primitive
constructs should include scalar types (numbers, booleans, etc.), arithmetic and other
scalar primitives, conditionals, data structures, first-class functions, and "letrec" recur-
sion. It should also reflect the fact that many implementations can treat "first-order"
function calls (a known function applied to all arguments simultaneously) more efficiently
than higher-order calls.

" It should be minimal, in the sense that it does not include features which can and ordi-
narily would be implemented in terms of more primitive features.

" It should have a well-defined operational semantics which accurately models the behavior
of realistic functional language implementations. Specifically, there must be a natural
correspondence between operations in the operational semantics and in a functional lan-
guage implementation, and the operational semantics should accurately model sharing of
computation which takes place in an implementation.

" The language and its operational semantics should have a formal structure which makes
it easy to study the relationships between the individual computations which comprise
the execution of a program.

We should point out that when we speak of functional language implementations we are of

course referring to compiled implementations, not interpreters.
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The mathematical basis of functional quads is as an abstract reduction system [37, 49]. In

this respect, it is similar to the lambda calculus, and the reader may wonder why we need to

introduce a new model of functional computation when the lambda calculus is so well known.

The reason is that the lambda calculus fails rather miserably in meeting the second and fourth

goals above: in lambda calculus, the only primitive constructs are functions and function

application, and so the other primitive features mentioned above must be simulated in lambda

calculus through the use of functions. Numbers, for example, may be simulated with Church

numerals, and recursion through the Y combinator [11]. Such simulations are far removed from

their typical implementation as machine arithmetic and cyclic references, and furthermore do

not have the same sharing properties as in an implementation. There are, of course, many

examples in the literature of extensions to lambda calculus to include primitive data types and

functions [11, 48], as well as graphical representations which model certain kinds of sharing [72,

78], but these are still somewhat removed from real implementations, and do not share the

wide acceptance and plentiful theory of lambda calculus. The fifth goal above would require

still another set of extensions to lambda calculus (e.g., Lvy's labeled lambda calculus [51]).

In short, since lambda calculus itself does not meet our needs, we are better off constructing a

system that meets them exactly. Since we are modeling functional computation, of course, our

system will not be very different in spirit from lambda calculus.

Our preoccupation with operational semantics comes about because the questions raised

by sequential implementation-namely, in what order machine instructions will execute-are

fundamentally operational in nature. Working with an abstract system instead of actual ma-

chine code, however, allows us to abstract away unimportant details, including details of how

and where memory is allocated, how presence bits are maintained, procedure linkage and envi-

ronment representation, etc. The term "functional quads" is derived by analogy to the quads

notation [3] commonly used as an abstraction of imperative code for von Neumann machines,

which hides similar details. Our intuition is that functional quads can play as universal a role as

sequential quads, serving as the basis for all kinds of functional language compilers, whether for

sequential or parallel architectures, with lenient or lazy semantic-, for von Neumann, dataflow,

or reduction machines.

In the first part of this chapter, we present the syntax and operational semantics of functional

quads along with a discussion of how functional languages relate to functional quads and how

functional quads relate to sequential code. In the second part, we investigate the theoretical
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II

.i Scalar : Number I true I :falos
Struct :=< Struct ag ) , Identifier(°) . .,Identifier (° ) > n > 0

n

Partial (Identifier) Identifier(°) ... Identifier( ) ) 0 < i < n

Value Scalar I Struct I Partial
Primary Identifer(O) I Value

Simple ::= Primary I const Value I Primary Op Primary)
if Primary then Block else Block I
seltj Primary I is-t? Primary)
Primary Identifiez(° )

Op ::= <

Block ::= { Binding; Binding; ... in Identifier(O) }

Binding IdentifeA°) - Simple I
Identifie~ n ) Identifier(o) ... Identifier( ,) = Block n > 1

State ::= Binding ; Binding ; ...

* A State must also be name-consistent, as defined in the text.

Figure 4.1: Syntax of Functional Quads

properties of functional quads as an abstract reduction system. Among our results are some

very strong assertions about the relationships between computations performed in different

executions of the same program, and about the equivalence of intermediate results obtained in

different executions. These results in turn expose the parallelism inherent in functional quads

and the relationship between lenient and lazy evaluation.

Functional quads and its reduction system was inspired in large part by the rewrite rule

operational semantics for Id given by Arvind, Nikhil, and Pingali [83.

4.1 Syntax

The syntax of functional quads is given in Figure 4.1. Some important details:

* The syntactic category Identifier is partitioned into an infinite number of sets, each cor-
responding to a different arity. A parenthesized superscript indicates the arity of an
identifier; e.g., Identifier(2) is an identifier in the arity 2 set. As the grammar for bindings
indicates, the arity indicates how many formal parameters are present in an identifier's
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definition; the arity will affect how identifiers will be rewritten by the abstract reduction
semantics. Arity should not be confused with type, which is a semantic property, not a
syntactic one.

" Structure tags are also partitioned into sets according to arity, where the arity of a tag in-
dicates the number of components a structure with that tag has. For each n-ary structure
tag t there are keywords sel-t-1, ... , seltn, and ist? which correspond to selectors
and a predicate. No special syntax for constructors is needed as the syntax for Struct
serves this purpose. Structure tags have no connection with identifiers, and are not first
class.

" A State is a complete program; by convention it should contain a binding for the special
identifier 0(o), whose value is to be considered the result of the program. Typically, a
program will consist of a number of bindings defining functions along with a binding
for 0 (0) which applies one of these functions to some arguments.

Beyond being partitioned according to arity, the syntactic set Identifier has a dyadic function

newid defined over it, which allows the generation of new identifiers from old ones. Specifically, if

AM°) and B (') are identifiers of arity zero and i > 0, respectively, then newid(A, B) is an identifier

of arity i uniquely determined by A and B. There is nothing mathematically unorthodox about

this; we are merely asserting that the set Identifier has a structure wherein certain members

are related to others through the newid relation. We will use newid when we give the semantics

of function application, in which we need new identifiers to construct a copy of the called

function, distinguishable from all other calls; through newid, each new identifier will be uniquely

determined by the caller and the old identifier. Readers interested in the mathematical details

of Identifier and newid may consult the appendix to this chapter (Section 4.8).

The actual syntactic set State is a subset of that generated by the grammar in Figure 4.1,

for we also require that a state be name-consistent. The semantics given in the next section

give a "letrec" interpretation to the syntactic sets Block and State; name-consistency is simply

a group of restrictions on identifiers to make sure that scoping rules are properly obeyed and

preserved by the semantics. A state is name-consistent if it satisfies these three conditions:

1. All identifiers are defined in scope, that is, any identifier appearing on the right hand side
of a binding must also appear on the left hand side of some binding in an enclosing block
or in the state.

2. All identifiers appearing on left hand sides are pairwise distinct. We really mean all left
hand side identifiers: a left hand side identifier, no matter how deeply nested in blocks it
appears, must be distinct from every other left hand side identifier, whether in the same
block, an enclosing block, an enclosed block, or a non-overlapping block.
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3. If a state or block contains a binding of the form

X a Primary Identifier;

then no other left hand side in that state or block, nor in enclosed blocks, contains an
identifier that is newid(X, Y) for any Y.

Condition (1) above requires that any identifier used in an expression have an associated def-

inition, while conditions (2) and (3) make sure that there are no multiple definitions. (The

motive for condition (3) will become apparent when we discuss the semantics of function calls

in the next section.) For the sake of simplicity, the latter two conditions are actually a bit

more stringent than is necessary to make everything work out; this is inconsequential since the

conditions only affect the choice of identifiers, which in any event is arbitrary as far as the

meaning of the program is concerned.

To illustrate functional quads, here is a definition for factorial, expressed in Section 1.1's

kernel language and in functional quads:

Kernel Language Functional Quads

fact x M fact(1) x(o) -
if x <= 0 then fp(O) = x(O) <= 0;
S res(° ) a

A c else if p(O) then
tX *(fact (x -0)); {in 11

! else
! {x(x(°) =x(°) -1

fxx(°) c (fact(;)) xx(°);
xfxx(o) =x(o) * fXX(°);

in
xfXX(°)1;

in
res(°)4;

A functional quads program to compute the factorial of five, therefore, would be:

0(o) = f actMl 6; f act (1) x(°) .. ;

In general, we can easily translate a kernel program into function quads by flattening blocks

where they do not belong, introducing new ones where they are required, and introducing new

identifiers for unnamed subexpressions; we discuss this in more detail in Section 4.3.

Since the arity of an identifier can be inferred by looking at the binding which defines it,

we will henceforth omit most arity superscripts. The origin of the name "functional quads"
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should be clear: the restricted syntax for expressions gives programs an appearance akin to the

sequential quads notation used to describe sequential object code, where each line describes a

single computation. It should be emphasized, however, that unlike sequential quads there is no

significance to the order of bindings in functional quads; we discuss this further in Section 4.4.

4.2 Semantics

We give the semantics of functional quads operationally, as an abstract reduction system [37, 491.

Definition 4.1 An abstract rewriting system (ARS) is a structure (E, I-) consisting of a set E
and a binary relation P on E.

For our purposes, E is the set of all name-consistent states and P is the one-step reduction

relation, to be defined below. The idea is that a P b if b is the state obtained from performing

one step of evaluation on a. We will define I- in such a way that "one step" of evaluation will be

the application of a primitive, or the selection of a conditional, or the application of a function,

or the substitution of a value.

We define F- through rewrite rules, which concisely describe the pairs of states such that

a F- b. For example, there is the following rewrite rule:

X a Y; Y - V ==* X a V; Y Z V

Each binding on the left hand side of the rule is to be matched against a separate binding of a

state a. If such a match is found, then a I- b where b is the state constructed by replacing the

matched bindings of a with the bindings given by the right hand side of the rule. The bindings

which match the left hand side need not appear in the same order as in the rule, nor need they

be consecutive, and the bindings which replace them may be added to the state in any order

and at any position. For example, the rule above implies that among other pairs, F- holds for

the following pairs of states:

0 a i; j a t + 5; 1 a 3; F- 0 - 3; i = 3; j , i + 5;

Here we have matched 0 with X, i with Y, and 3 with V.

Below we present the complete set of rewrite rules, with explanations. Throughout, V de-

notes any value, X (° } , y(0), and Z(0) any identifier of arity 0 (omitting the superscript when

apparent from context), FO") any identifier of arity n > 0, P any primary, and B any binding.
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XuY;Y=V; ;XV;Yu V; (Rla)

X-YOpP;YMV; =: XuVOpP;Y"V; (Rib)

X•POpY;YMV; X=POpV;Y.V; (Ric)

X if Y then {...}else{...}; X if V then {...} else {...}; (Rid)
Y V; Y V;

X =Sol-t-i Y; Y =V; = X B el-ti V; Y =V; (Rle)

X isj? Y; Y V; : X isi? V; Y V; (Rif)

X YZ;Y V == XWVZ;Y V (Rig)

Collectively, these rules allow an identifier to be substituted by the value to which it is
bound, for all contexts in which the grammar allows a Primary in an expression. Because
only values are substituted, the computation which reduces an identifier to a value is
shared among all references to that identifier. The choice of when Primary appears in
the grammar as opposed to Identifier(°), and therefore the choice of substitution rules, is
carefully based on semantic grounds, as we discuss in Section 4.4.

X - const V ::: X - V (R2)
The const statement and this rewrite rule do not give functional quads any additional
expressive or computational power, but are included as a technical convenience for the
benefit of the material in Chapter 5.

X a if true then {Bt,;... ;Bt,,, in Y} else : Bt, 1 ;... ;B, ; (R3)

There is also an analogous rule for if false .... After execution of this rule, the selected
arm becomes part of the state, and so its bindings become subject to execution. The
identifiers bound in the new bindings added to the state cannot conflict with bindings
already there, because of the pairwise distinctness aspect of name-consistency.

X - VI + V2 ; == X - V3 ; (R4)

where V3 = V + V2 . There are similar rules for -, *, >=, etc.

X a sel-ti <t,Y 1 .... Yi,.... Y,>; = X - Y; (R5)

X a isJ? <t,Y,... ,Y,,>; = X - true; (R6a)
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X a isJ? V; =* X a false; (R6b)
for any V which is not a Struct with tag t.

X - (F(n) Y, ... i-1) i; =: X . (,n) y, ... y-_ y,) (R7)

where I < i < n.

X -4
X(F( ) Z, ... Zn_,) Z.; 11= Y .... (R8)

F(n) Y1 ... Y - (Bn;... ;BFn in ZF}; BFI;... BF.;
Y' -" I ... .; -n Zn;

where the primes indicate consistent a-renaming of all identifiers appearing on left hand
sides within the body of F (n), together with the formals, such that they are given unique
names not appearing anywhere else in the state. (By "all identifiers appearing on left
hand sides" we are including formals of internal definitions and the binding lists of all
enclosed blocks, so that the only identifiers unaffected by the renaming are free variables
of the function F.) The choice of a-renaming is not arbitrary: for each identifier y()
that is to be renamed, it is renamed to newid(X,Y(')) (where X is the same X as in
the statement of the rule). In this way, we preserve a connection between the caller and
the new computation added to the state. (We point out that condition (3) of name-
consistency (page 51) insures that the new bindings added to the state by this rule do
not conflict with any already present.)

As an exercise, we invite the reader to verify that name-consistency is preserved by all of

the rules above.

All of these rules have the effect of replacing all or part of an expression which occurs on

the right hand side of a binding. In this way, this abstract reduction system bears a strong

resemblence to a term rewriting system, except that while the replacements in a term rewriting

system are context-free, in this system a replacement depends upon other components of the

state. In a term rewriting system, the subexpression that is replaced is called a redez, and

we will adopt that terminology to refer to the portion of the state which changes; in Rules

RIa through RIg, the redex is the occurence of Y on the right hand side of the binding for X,

while in Rules R2 through R8 the redex is the entire right hand side of the binding for X.

We will sometimes use the notation x I-, y to indicate that a particular redex a within x is

rewritten to arrive at state p (a notion we will formalize in Section 4.5).

Executing a program is modeled by the abstract reduction system as successive application

of rewrite rules to an initial state until no more rewriting is possible. Here is an example, in

which the selected redex is underlined at each step (note that this is just one of many possible

reduction sequences from this initial state):
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a sel_-con_1 b; b = W. a; a 3 + 4; 1 x = (y = <CoS,Xy>; in y};

o= 1l-con_1 b; b = yy; a = 3 + 4; f X = {...}; yy = <Conx,yY>; xx a;
I-

= selcons- k; b a <conzzx,yy>; a a 3 + 4; f i = {..z.}; 7 = <ConS,zX,y>; ...
I.-

u. sLcon.l <cons,xx,yy>; b : <€oas,xl,7>; a : 3 + 4; t a : {...} .

F-
0 a xx; b - <conA,zz,yy>; a = 3 +4; f z yy z <cons,zx,yy>; xx = a;

I.-

- XX; b = <coasxx,yy>; a a 7; f a = {...}; xy a <cons,xx,yy>; xx a &;
I.-

= A&; b = <consxz,yy>; a = 7; f x = {...}; yy : <conSXx,yy>; xx a 7;

0 : 7; b = <cou,x,yy>; a = 7; t a = {...}; jy : <cons.x, y>; zx = 7;

Here we have implicitly assumed that newid(b,x) - xx and newid(b,y) = yy. Notice that the

call to procedure f is executed before the argument a is reduced to a value, illustrating the use

of identifiers in functional quads models non-strictness. Data structures are non-strict because

they are considered values even though they contain identifiers whose values have not yet been

computed. Similarly, rules R7 and R8 make functions non-strict because they apply even when

the arguments to functions are non-value identifiers.

In saying that the elements of E in the ARS (E, 1-) are states, we are actually glossing over

a minor technical point. In our description of rewrite rules, we noted that the order in which

bindings appeared in the state is immaterial, and similarly there was complete freedom in how

new bindings were added to the state. If a state a has a different ordering of its bindings but

is otherwise syntactically equal to another state b, then a and b are indistinguishable as far as

the reduction relation I- is concerned, and we should really consider them to be identically the

same. To be extremely precise, then, we should say that each element of E is not a state but

an equivalence class of states which are syntactically equal but for permutation of the state

bindings, and when we write something like

- j; j a i + 5; 1 - 3; F- 0 - 3; 1 - 3; j - i + 5;

it is tacitly understood that the states on either side of the I- symbol are just representatives

from their respective equivalence classes. This said, we shall h,nceforth disregard it entirely,

and simply ignore the order in which state bindings happen to be written.' Many readers

will recognize that a similar equivalence class argument crops up in lambda calculus, where

1We could, if we liked, extend this equivalence over permutation to the bindings of other blocks contained
within a state, but there is no reason to for the purposes of our theory.
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Xa.a and Xb.b are considered the same lambda expression even though they ae syntactically

different (see [11], Appendix C). On the other hand, in functional quads we shall not use this

sort of equivalence class argument to deal with the issue of a-renaming, hence the states C' -
a; a a 5; and 0 - b; b u S; are different states. Our use of newid obviates the need for

such equivalence.

4.3 From a Functional Language to Functional Quads

We have given functional quads a syntax similar to that of the kernel language we introduced

in Section 1.1, and so it may appear that the relationship between the two is no more deep

than concrete syntax. In fact, the conversion from a functional language to functional quads

should be considered a process of compilation: a functional language and functional quads each

have their own well-defined semantics, and so the translation from one to the other is a matter

of achieving in the functional quads semantics the meaning of the original functional language

program. This translation may be straightforward or not, depending on how closely the two

semantics match.

In describing the kernel langauge in Section 1.1 and in using it in examples (Chapter 3),

we intentionally assumed a semantics that mirrors the semantics of functional quads. Trans-

lating from that particular kernel language to functional quads, therefore, is mostly a matter

of introducing identifiers and blocks to conform to the restricted syntax of functional quads.

The following translation schema Q translates a kernel language definition into a functional

quads definition by adding identifiers. We assume that the kernel program has already been

a-renamed so that each identifier is uniquely defined, and we use T to denote a new unique

identifier and the symbol § to denote concatenation of bindings:

QJF Yi ... Y, " E] = F Y 1 ... Y. - {Q[TI - E] in T}

QIXa C] = x .C
Q[X a F] = X a F))

QIX - Y] = X a y(0 )

Q[X - ElOp Ell = Q[T ,- Ell§Q[T 2 - E 2j§X - T Op T2
Q[X •if El then E2 else E3 1 = Q[T - Elj§

X a if T, then {QT 2 = E2] in T2}
.lse {Q[T 3 = E31 in T3 }

QJX - ,aket El ... Ej = Q[T w El]§...§Q[T. a Ej §X - <t,T ,... T,>
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Q[X a u..li El = Q[TI - EI§X = s.lt.i T

Q[X a ist? El = Q[T a E] j X = isl? T,
Q[X - El E21 = Q[TI - El § Q[T2  E21 § X - T T2

Q[X - {Bi;...;B. in Ell = Q[BE]§... § Q[B.] §Q[X - El

This is by no means the best translation possible. For example, extra identifiers are in-

troduced if the original program contains a binding like a a b + c; this is easily corrected by

adding some more rules to the translation. There are, however, some other choices facing the

designer of a translation that are much less trivial in nature.

Some choices amount to source-to-source optimizations. A good example is common sub ex-

pression elimination: if two identifiers in the same block are bound to the same expression, one

can be eliminated (and the references to it suitably renamed). Another important optimization

is "fetch elimination" [71], which bypasses a fetch from a data structure when the value stored

there can be identified. An example:

a a = <tuple,xy>; a a <tuplexy>;~b = sel-tuple-1 a; --* b a x;

This optimization is particularly important when tuples are used as a substitute for multiple

values. For a discussion of other traditional compiler optimizations in a functional setting, see

[71] and [64].

Other choices in the translation to functional quads try to match the functional quads

program to the capabilities and/or requirements of the compilation phases which follow. For

example, an implementation may be able to compile better procedure calls when a known

function is applied to all arguments. Thus, we would want to add a statement:

, QIx F] = X. Wn)

Q[X - F E1 ... En] = Q[T1 - Ell§...§Q[T = E, = (F§X) T, ...T,,) T

so that a single first-order application statement is generated instead of n partial application

statements. Another implementation-dependent transformation is the promotion of internal

definitions to top-level via lambda lifting [42]; this may be required if an implementation has

no primitive way of dealing with internal definitions.

Still other choices affect the sharing and/or scheduling of computation. It is possible, for

instance, to achieve greater sharing in some situations by performing mfe abstraction [381.
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Another option involves the scheduling of computation in conditionals. The translation schema

above enforces the property that code within an arm of a conditional is not evaluated until the

predicate becomes a value. If "eager" conditionals are desired, however, an alternate translation

of conditionals can be used:

QJX a if El then E2 else E3! = Q[T - Ell Q[T2 - E21 QT 3 - 3 1§

X a if 71 then {in T2} else (in T3}

To summarize, functional quads has a particular semantics, which the translation from

the functional source language must take into account. All of the decisions related to assigning

meaning to source language constructs are encoded into the functional quads for a program, and

so our task in describing the generation of sequential code is limited to faithfully implementing

the operational semantics given for functional quads.

4.4 Functional Quads vs. Sequential Quads

Functional quads has been carefully designed so that its computation steps correspond closely

with computation steps in the familiar sequential quads which model sequential object code. In

the previous section we saw how functional languages can be translated into functional quads,

and that this is fairly straightforward if the original language's semantics are similar to that of

functional quads (most importantly, if the original language is non-strict). The translation from

sequential quads into target code is well-known von Neumann compiler technology, involving

register allocation, procedure linkage optimization, etc. The only difference between functional

and sequential quads is that in functional quads the ordering of subexpressions and delaying

of computation is implicit, but in sequential quads it is explicit. As we discussed in Chap-

ter 3, the heart of functional langauge compilation lies precisely in determining the ordering of

subexpression evaluation and in deciding what to delay, so the meat of a functional language

compiler is concentrated into the translation from functional quads to sequential quads.

For example, here is a functional quads fragment:

... ; x 2 *3; za x +y; y - 4 *5; ...

Each binding can be directly translated into a sequential quads statement, but in addition we

must choose their relative ordering. One possible translation is this fragment:
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y :"4 *5

x :2 "3

z :X +y

Another possible translation would interchange the first two statements. Correctness of a

functional quads to sequential quads translation requires the statement ordering chosen to be

consistent with a possible reduction sequence of the original functional quads program. The

sequence above, for example, is consistent with the following reduction sequence:

... ; •.2 3; z x + y; y- 4*..;

... ; • - 2 * 3; z x + y; y - 20; ...

x..; • = 6; z - x + y; y - 20; ...

... ; x a 6; z = 6 + Y; y m 20;
F-

... ; x z 6; z = 6 + 20; y = 20;

... ; - 6; z - 26; y=20; ...

There is a one-to-one correspondence between expressions in a functional quads program

and its sequential quads counterpart, and also between variables. Furthermore, executing a se-

quential quads statement is modeled in functional quads as the reduction of some substitution

rules (Rla through Rlg) followed by a computational rule (R2 through R8). Above, for ex-

ample, the sequential quads statement z :- x + y was modeled by the third, fourth, and fifth

reductions in the functional quads sequence. We can examine the sequential quads statement

at a finer level, however, and note that it is really composed of two operand fetches and an

addition-and each of these has an exact counterpart in functional quads. This explains why

substitution was limited to the seven cases covered by rules Rla through Rlg: they cover the

cases where the corresponding sequential quads must fetch from the corresponding variable.

If other substitution rules were added to functional quads, they would not correspond to any

movement of data in the corresponding sequential quads program, and could lead to infinite

sequences of such vacuous reductions. For example, if a substitution rule were added which

allowed substitution for a variable appearing within a data structure, a cyclic structure could

lead to the following infinite reduction sequence:
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?? ?

a - <coas,a,b> I- a = <cona<coax,a,b>,b> I- a = <con2,<cons,<cons,a,b>.b>,b> I- ...

This reduction sequence does not correspond to any sequence of computations that would take

place in an actual implementation.

The technique of translating functional quads into sequential quads is taken up in the four

chapters that follow. In the remainder of this chapter, we establish some mathematical prop-

erties of the functional quads reduction system, which form the foundation of our compilation

method.

4.5 Mathematical Properties of Reduction

We now formalize some of the concepts we introduced in Section 4.2. The following two defini-

tions are standard [49]:

Definition 4.2 A normal form of an abstract reduction system (E, I-} is an a E E such that
there is no b E E for which a - b.

Definition 4.3 A reduction sequence in an ARS (,-) is a sequence of elements from E
ao,a 1 ,... such that ai - aj+, i > 0. A terminating reduction sequence of length n is a finite
reduction sequence ao,... ,an such that an is a normal form.

We also wish to formalize the notion of identifying a particular redex within a state.

Definition 4.4 A redex specifier for functional quads is a pair a = (X, p) where X is an identi-
fier of arity zero and p is the name of a rewrite rule (an element of the set {RIa, Rib,.. . , R8}).
A redex a = (X,p) exists in a state So if So contains a binding of the form X = E; which
matches rewrite rule p (perhaps together with other bindings from So, depending on the rule).
If a redez a ezists in a state So, then So F,, S1 where S, is the state obtained from applying the
specified rule to the specified redex.

A redex specifier can denote at most one redex within a given state because name-consistency

guarantees the uniqueness of identifiers bound in a state.

All of the theory we will develop in the framework of functional quads depends on the fol-

lowing three properties of the functional quads reduction system (the names of these properties

are not standard):

Property 4.5 (Commutivity) Let a and O be distinct redexes in a, and let b and c be such
that a F'a b and a -# c. Then there ezists d such that b t-O d and c -d.
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This property says that given two redexes, rewriting them consecutively yields equivalent results

regardless of order. This very strong property implies, among other things, confluence (the

Church-Rosser property) and that all reduction sequences to normal form are of equal length.2

Property 4.6 (Redex Uniqueness) Let a be a redez in a. If a F-a, b, then there is no c such
that b -* c and a ezists in c.

In other words, the same redex (where "same" means having the same reduction specifier a)

cannot be reduced twice. This implies that the redex specifiers defined above are adequate to

identify a particular step in a reduction sequence.

Property 4.7 (Strong Dependence) For all a, b, c, d such that a f-* b -, c I-# d, if 3 does
not exist in b then a is reduced before # in every reduction sequence that begins with a and
includes ft.

This says that if the reduction of a redex a introduces a new redex /, then reduction of a is a

necessary precondition for the creation of /.

As we mentioned, the commutivity property implies confluence, which in turn implies that

normal forms are unique, an important property indeed if functional quads is to be a model

of computation. Adding the redex uniqueness property will allow us to show that in every

reduction sequence of a given program to normal form (indeed, to any arbitrary derivable

form) the same set of redexes are reduced. We will not make use of the strong dependence

property until the next chapter, where it will allow us to infer sufficient constraints upon the

order in which redexes are reduced from a consideration of all possible orderings.

In the remainder of this section we prove that functional quads has each of the three prop-

erties above, and also prove some results that follow from the properties.

Theorem 4.8 (Figure 4.2a) Functional quads has the Commutivity property.

Proof. Let a = (Xc,,pc,) and / = (X 0 ,p0 ). We consider two cases depending on whether

X = X0.

Case I (Xo, # X 0 ). If a I-c, b, the only way b differs from a is that new bindings may have

been added and that the right hand side of Xc,'s binding will have changed. Now the redex/3 is

completely unaffected by this, since the binding for X# is unchanged, as are any other bindings

'A weaker version of this property which does not identify the redexes a, and 0 is called the Diamond

Property (11], or WCR' (49].
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Figure 4.2: Diagrams of (a) Commutivity; (b) Confluence

involved in reducing 0 (such as Y = V; or F Y' ... Y,,= {... };, which cannot contain

redexes and are therefore not affected by a). So P exists in b, and reducing it in b makes the

same changes to the state as reducing it in a. By symmetry, a exists in c (where a I-# c), and

reducing it in c makes the same changes as reducing it in a. The net changes made to the state

by reducing both a and / are independent of the order in which they are performed, and so

b I-# d and c -, d.

Case 2 (X. = X#) In this c-,se, it must be that p, = Rib and pp = Ric (or vice versa),

and the same argument about non-interference in Case 1 applies. a

Another way of looking at it is that reducing a redex never duplicates an existing redex,

nor does it remove any redex other than the one reduced. We are also depending on the way

new identifiers are introduced by Rule R8; the use of newid insures that they are created in a

way which does not depend on the relative order in which various R8 redexes are reduced.

Corollary 4.9 (Confluence (Figure 4.2b))

Va,b,c a-*bAaF-3db-* dAcF-* d

Proof. Standard [49] (see also the proof of Lemma 4.12). .

Corollary 4.10 Normal forms in functional quads are unique.

Theorem 4.11 Functional quads has the Redez Uniqueness property.

Proof. Figure 4.3 enumerates all the syntactic possibilities for a binding of the form X - E;,

and shows which rules can transform one into the other. On no path in this diagram does the
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R2
X - conast V

Rib x ,O 3RIc

X Y1 OP Y2 X V1 Op V R4

Ric X -YOP V2  RibRlc

Rif R6
X= ist? Y -R X= ist? V R6 X V

Rid R3

X -if Y ... Rld W X-1fV ... R

X-sel-t-i Y Rie X sol-t-i V R X Y Ra

R8

x - Y Zx Vz R7

Figure 4.3: Summary of Possible Rewritings of Bindings

same rule appear twice, so if a, = (X,pl) and a2 = (X,p2) are two redexes reduced in some

reduction sequence, p, # p2.

The following lemma strengthens Corollary 4.9 (confluence) by identifying the redexes

needed to unite two states.

Lemma 4.12 Let a *.. "-a, b and a c... F- , c be two finite reduction sequences. Then
there exists d such that b F-,S "" - d and c -n ... k",k d, and furthermore the following hold:

(6i .... ,6,) = (,.,,) ,.,,

where the notation (x.,... ,fy) - {Yl,... ,yr,} indicates the sequence obtained by removing el-
ements of the set .yl,...,y,} from the sequence (Zl,... ,,), maintaining the same order
between the z's that remain.

Proof. We construct d by using Theorem 4.8 (commutivity) to "tile" the reduction diagram, as

shown in Figure 4.4a. Consider the uppermost row of tiles. There are two cases depending on
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Figure 4.4: Proof of Lemma 4.12
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Figure 4.5: Proof of Theorems 4.13 and 4.15

whether al = Of for some i. If not, then 7yj = a, (Figure 4.4b). If so, then there is no -y reduction

in the first row (Figure 4.4c). Continuing this argument for the remaining n - 1 rows gives the

7-sequence result (note that the bottom edge of each row will contain all /'s which are not the

same as any a already executed; Theorem 4.11 guarantees that none of the a's which follow

will be the same as a 3 that is missing from the bottom edge). A symmetric argument gives

the 6-sequence result. j

Theorem 4.13 Let a F-,, ... 1-c, b be a finite reduction sequence. Then all reduction sequences
from a to b are permutations of(a 1,... , an).

Proof. Suppose the theorem were false; then there is a reduction sequence a -BO ., c where

b = c and either {ai... .,ol1 - I3, ... ,m} #0 or 0/3i,... ,/m} - {a 1,... ,a} #0. Consider
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the former; there is some ai which is not equal to any /l. We can use the tiling argument

from Lemma 4.12 to construct the diagram in Figure 4.5a. Since ai is absent from the paths

a f-* c and a I* a', by the lemma it is absent from the paths a' F* c' and c F* c'. Hence the

reduction from ' to c" must be of a,, and so we have c FF* d. But b = c, so we also have

a -' b -j-* d, violating the redex uniqueness theorem. Contradiction. A symmetric

argument handles the case where there is some /3 not equal to any a. I

One of the consequences of this theorem is that all reduction sequences from a given state

to normal form are of the same length, and so whether normal form is reached is independent

of reduction strategy. We discuss this further in the next section.

We will also find the converse of the previous theorem useful:

Theorem 4.14 Let a ... F-,,, b be a finite reduction sequence and let a 1'11 ... I-n c be
another reduction sequence where (/3i,.. .,f3,) is a permutation of (a,... ,an). Then b = c.

Proof. By Lemma 4.12 there exists d such that b I-* d and c F-* d, but by the lemma both of

these sequences must be empty. g

These two theorems allow us to sensibly speak of the set of redexes reduced in reducing a

state So to another state SI; we will denote this set by ASOI*S.

Theorem 4.15 Functional quads has the Strong Dependence property.

Proof. We are given a F* b I-c, c F-0 d where /3 does not exist in b; so performing the reduction

b 1-c c creates the redex /3. There are a limited number of possible combinations for a and /3;

for example, if a is an Rlb redex, then 3 must be an R4 redex. Suppose the strong dependence

property does not hold; then there is a sequence a -* e F# e' where the reduction from a to e

does not include a. We can apply Lemma 4.12 to unite d and e', so that we have d F* f and

e' -* f, where a is reduced somewhere along e' F* f (see Figure 4.5b). But in fact, since3 was

reduced in arriving at e', a cannot possibly exist in any successor of e'; continuing the example

above, if /3 is an R4 redex then after reducing /3 the right hand side of /3's binding is a value,

and will never contain an Rlb redex. Contradiction. (We leave the detils of the other cases

as an exercise for the reader.) g

This theorem does not say that a will always create /3; for example, if /3 is an R4 redex then

in general there is an Rlb redex and an Rlc redex that must precede it, and only the second of

these will create /3. What the theorem does say is that there are no disjunctive preconditions
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for a redex-a redex cannot be created by the reduction of either of two other redexes, for

example. We will not make any use of the strong dependence property until the next chapter.

4.6 Termination, Weak Normal Forms, and Lazy Evaluation

We have seen that normal forms produced from a given program are always the same, regardless

of the evaluation order used in their derivations. We now examine the question of whether

the choice of evaluation order affects whether a normal form is reached at all. Answering

this question will allow us to contrast lenient and lazy evaluation within the functional quads

framework.

In fact, Theorem 4.13 showed that in functional quads, all derivations to a normal form are

of equal length, and so evaluation order has no effect on whether normal form is reached. This

property seems a bit surprising at first; we know that lazy evaluation of futictional programs

terminates on programs where other evaluation orders fail, but it seems that in functional

quads the evaluation order makes no difference. The problem is not with the functional quads

reduction system, but simply in what we consider a normal form.

In functional quads, computations (redexes) axe never removed from the state, even when

their values do not contribute to the final answer. To illustrate:

0 = (k 5) p; p = (loop) 3; loop v - {a - (loop) v in a}; k x y - fin x};

This program has no normal form, because each attempt to reduce (loop x) adds another call

to loop to the state. On the other hand, it is possible to reduce this program to a state that

contains a binding 0 = 5. So we can obtain states that are not normal forms but nevertheless

have an answer. We call these states weak normal forms.

Definition 4.16 A weak normal form in functional quads is a state containing a binding 0 f
V, where V is any value.

Unlike normal forms, weak normal forms are not necessarily unique. For example, the preceding

program has the following two weak normal forms, among others:

0= 5; p = (loop) 3; xx = 5; yy =p; loop v = {...}; k x y = fin x1;

= 6; p = aa; vv = 3; xx = 5; yy = p; aa = (loop) vv; loop v = {.
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While weak normal forms are not unique, we certainly expect the answers contained in weak

normal forms to be unique. This is expressed in the following theorem:

Theorem 4.17 (Unique Values) Let So, S1, and S2 be states such that So F-* S, and So I-*
S2, where S1 contains a binding X a Ii; and S2 contains a binding X - V2 ; for some iden-
tifier X. Then V1 = V2 (syntactic equality).

Proof. By Corollary 4.9, there must be a state S3 such that S1 F-* S3 and S2 -* S3 . Now there

is no rewrite rule which modifies a binding of the form X(O) a V; (see Figure 4.3), so S3 must

contain a binding X = V3; and furthermore V1 = V2 = V3.I

Corollary 4.18 The answers contained in different weak normal forms of the same state are
equal.

Proof. Let X be > in Theorem 4.17.

We see, therefore, that it makes sense to stop evaluation when a weak normal form is

reached, since the answer contained in a weak normal form will not be altered by further

evaluation.3 If a program has no normal form, however, there is no guarantee that a particular

evaluation sequence will reach a weak normal form. So if we axe interested in weak normal

forms, evaluation order becomes significant. We generally specify an evaluation order through

an evaluation strategy, which is an algorithm for choosing the next redex to reduce, given a

state. At each step, the strategy either identifies a redex to reduce, or indicates that no further

reduction is to be done. 4 We can give a characterization of program execution in terms of weak

normal forms and evaluation strategies, as follows:

Definition 4.19 An execution under strategy S of a program So is a reduction sequence
So, S1, ... where the redex chosen at each step is determined by the strategy S. A terminating
execution under strategy S is a finite execution under strategy S So,... , S" where strategy S
identifies no redexes in Sn. Terminating executions are further classified as non-deadlocking,
if S, is a weak normal form, and deadlocking otherwise.

In other words, deadlock means termination with no answer.

We will mainly concern ourselves with the lenient strategy, which simply says that at any

step, any of the available redexes may be evaluated next, unless the state is already in weak

normal form, in which case the strategy terminates. How does this correspond to lenient
3If the answer in a weak normal form is a data structure, then the variables it contains may or may not have

values. If desired, these can be further evaluated, and Theorem 4.17 guarantees their uniqueness.
'An alternative way of defining a strategy is as a function from an initial state to the sequence of states

resulting from reducing according to the strategy 11].
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evaluation, which we described in Chapter 3? We recall that lenient evaluation scheduled a

subexpression based on whether it was executable, in the sense of having enough of its input

data available to proceed. Furthermore, an arm of a conditional is evaluated only after the

predicate is known. Examining the rewrite rules for functional quads, we see that both of these

requirements are met automatically by the construction of the I- relation. Thus, choosing any

available redex corresponds to lenient evaluation. Stopping at a weak normal form reflects the

fact that we are only interested in answers.

The lazy strategy for functional quads chooses a redex that is required to produce an answer,

and so models lazy evaluation. We can describe the lazy strategy as a case analysis on the

current state:

£1¢ - E; ... I = AIE - E; ...E

AZIV][Sj = [Terminate]
AfEJ[Sj = E, if E is a redex, otherwise:

IX( 0 )[... ; X(°) - E; ... ] = ArEJ[... ; X(° ) - E; ...
N[Vi + P2]I[S = AjP 2][S]
MPI + P21lS] = AK[PI][S]

Kr[if P then ... [S] = API[S]
JVIP XliS] = A(IPIIS)

i A/'lei-t-i P][S] = .Ar[P][S]

v'iis-t? PllSI = NPIPIISI

£ basically traces its way back from the answer until it finds a redex needed to make further

progress. The strategy has the same desirable termination property as lazy evaluation, namely:

Theorem 4.20 If a program So has a weak normal form, execution under the lazy strategy
always terminates.

Proof. At every step, C chooses a redex which must be reduced in any reduction sequence that

ends in a weak normal form (demonstratable through case analysis). So any reduction sequence

to a weak normal form is a superset of the sequence chosen by £; if there is a finite sequence to

a weak normal form, then the C sequence is finite too. (See (12] for a more general discussion

of needed redexes.) *
The function C can be used to obtain a strategy for reducing any state variable to a value,

not just c.
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To summarize, the behavior of a lenient or lazy implementation of a functional language is

modeled in functional quads as finding weak normal forms under the lenient or lazy evaluation

strategy, respectively.' Weak normal forms from the same program contain the same answers,

so the choice of strategy does not affect the result of a program, as long as a weak normal form

is found. Whether a weak normal form is found does depend on the strategy: the lazy strategy

always finds one when one exists, while the lenient evaluation strategy is only guaranteed of

finding a weak normal form when the program has a normal form, which is true as long as the

program does not contain any infinite loops.

4.7 Denotational Semantics

The theoretical foundation of lenient compilation is based on a syntactic system, the abstract

reduction system for functional quads. Nevertheless, we will see in Chapter 6 that semantic

reasoning about functional quads programs is often useful. We will therefore give a denota-

tional semantics for functional quads here. To be perfectly rigorous, we should accompany the

semantics with a proof that the reduction system and the semantics are congruent. Such an

endeavor is well beyond the scope of this thesis, however, and so we will content ourselves with

an intuitive conviction that the semantics accurately model the reduction system.

The semantics given below is modeled after the semantics for Haskell given by Johnsson [44].

Notation

x -+ A Inject z into domain A.

zIA Project z onto domain A.

z E A True if x is in A.

z i Select the ith component of tuple x.

X --+ y ; z If z then y else z.
Domains

E = Bool+ Int + S+ F+ {unbound}

S = StructTag x E*
F = E-E

Env = Ide - E

"For completeness, we point out that there is also an evaluation strategy for functional quads which models
strict evaluation. We will not discuss it in detail, but as an example we point out that it will not select an
R8 redex unless all of the identifiers Yi through Yn are bound to values. Hence, there will be programs for which
the lenient strategy terminates but the strict strategy deadlocks.
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Semantic Functions

(p, V p2 )i = p2 i = unbound -+ p i ;p 2

(p[e/ii])i 2 = il = i2 - e ; P i2
Po = Ai.unbound

K Scalar- E

P Simple E
C Simple-. Env-+ E

D Binding- Env - Env

Semantic Equations

P[O= E;Bi;...;B] C[{B1;... ;Bn,; in E}jpo

CLVIP = /CJ
C[Xlp = pX

Ciconat VIp = C[VIp

efP Op P2lP = fOp(CIPIpC(P 21p)
Clif P then Bkj else Bk2jp = ClIPiplBoot -. ClBkcp; C[Bk 2 p

LIP, P2Jp = (C(P jpjF)(,IP2jp)

C[<t,P..... e,P,>Jp = (t,t [Pp,...,C[Pn]p) - E
ltsel4ti Pip = (IPIpIS) 1 = t- (C[PIpIS) I (i + 1); 1
C[iset? PIp = (C[P~pjS) 1 = t -- true ; false

C[.B,;... ;B,; in P]p = C[P(p V fizAp'.D[B;... ; B;(p Vp'))

DJB,;...;B.;Jp = DIB]pV... V IB,,]p

V[X Elp = pojCIEip/X]
VIX X, ... Xn Bkjp = po[(Ax.....Axn.IBk](p[x,/XI,...,X/Xl,)) . E/X]

We should point out that the use of unbound in this semantics is purely a convenience,

as the syntactic restrictions on functional quads programs will prevent the meaning of any

subexpression from being unbound.

Most of the arguments we present in the following chapters make no use of the denotational

semantics. We will refer to it, however, when relating strictness analysis to the kind of depen-

dence analysis we will develop for functional quads. Mainly, we will assert that the meaning of

a variable that has not been reduced to a value is I, and that the meaning of a data structure

with tag t none of whose component variables have been reduced to values is (t, I, ... , .L).
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4.8 Appendix: The Structure of the Set Identifier

In Section 4.1 we stated that the syntactic set Identifier has a particular structure: it is parti-

tioned into sets according to arity, and there is a function newid defined over it for producing

new identifiers from old ones. In this appendix, which the reader may skip, we give a detailed

account of this structure.

What exactly does the function newid do? Mathematically speaking, it does not actually

"create" anything, but instead is just a ternary relation defined over the set Identifier. Given

the set Identifier, all we require is that newid satisfy the following three axioms:

" (Uniqueness) If newid(A, B) = newid(C, D), then A = C and B = D. In other words,
the same identifier cannot be constructed from two different pairs.

" (Newness) If newid(A, B) = C, then there is no way to obtain either A or B from C by
successive applications of newid. That is, the following relation:

{ (X, Z) I 3Y s.t. newid(X,Y) = Z V newid(Y, X) = Z }

is acyclic.

" (Arity Preservation) If newid(A,B) = C, then B and C have the same arity.

The easiest way to visualize newid is as a pairing operation, so that newid(a(°), f( 3)) =

(a,f)( ) . Formally, let 8i = {ai,bi,...} be disjoint sets of symbols for all i > 0. Then define

sets oro, a',... inductively as follows:

zEs, * Ea',

XEao,vEa'i * (X,v)Eai

In this approach, each a, is the set of identifiers of arity i, the set of all identifiers is Ui>0 ai,

and the newid operation is simply defined as newid(X, v) = (X, v).

Of course, it is more palatable to think of identifiers just as symbols, not pairs; so what

we are really asserting is that the set of symbols Identifier together with the newid relation is

isomorphic to the union of the ai sets and the pairing operation defined above. We also note

that the easiest way to satisfy condition (3) of name-consistency (see page 51) is to construct

programs only from the identifiers isomorphic to the sets s0,8,...; none of these identifiers are

newid(X, Y) for any X or Y.
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Chapter 5

The Analysis Framework

We remarked in Section 4.4 that the meat of compiling sequential code from non-strict pro-

gramming languages is in choosing an appropriate ordering on subexpression execution. As we

have seen, it is not always possible to choose a total ordering at compile time, so the best we

can do is to compile code into sequential threads, where instructions within a thread are totally

ordered but the relative ordering of threads is determined at run time.

In this chapter, we develop the theoretical basis for compiling non-strict programs into

sequential threads. We have already established functional quads as a model of non-strict pro-

gram execution; our non-strict compilation theory uses the functional quads reduction system

to obtain information about subexpression ordering. An outline of this theory is reflected in

the path on the left side of the chart in Figure 5.1, where we begin with a procedure definition,

expressed in functional quads. We construct a "test program" which applies the function to

some input, and from observing the ordering relationships that hold for all possible reduction

sequences, we arrive at the requirement graph for the test program. We repeat for all possible

inputs, then summarize the results in the function requirement graphs, which indicate which

ordering relationships hold for some inputs and which hold for all inputs. A procedure called

constraint computation converts this ordering information into constraints upon object code

in the form of two constraint graphs: one that indicates which instructions must be placed in

separate threads, and one that indicates how instructions placed in the same thread are to be

ordered. With the original functional quads program and the constraint graphs, multi-threaded

sequential code can be generated. The theory guarantees that for any input to the procedure,

there is some interleaving of the threads which corresponds to a legal reduction sequence of the

original functional quads program on that input.
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Figure 5.1: Overview of Non-strict Compilation

The theoretical formulation of non-strict compilation outlined above draws its inferences

about program behavior only from considering what actually happens when a procedure is

executed for various inputs. In this way, it captures the minimum necessary constraints upon

code generation, without any bias or prejudice toward a particular method for analyzing pro-

grams; all of the constraints derived are ones that were actually -observed for some input. Not

surprisingly, the theoretical formulation is not a practical method for compilation: obtaining

requirement graphs for all possible inputs is clearly an undecidable proposition, and even if the

requirement graphs were obtainable their conversion to constraint graphs is NP-complete.

While the theoretical model is not a usable compilation algorithm, it does provide a standard
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by which the correctness and effectiveness of actual compilers can be judged. Our characteriza-

tion of non-strict compilation in terms of constraint graphs provides a particularly nice way of

making this judgment: any real method of generating constraint graphs must generate at least

as many constraints as the theoretical model yields. This notion is formalized, and used as the

basis for several safety/correctness proofs.

The analysis that might take place in a real compiler is diagrammed in the path on the right

side of Figure 5.1. Through dependence analysis, approximate function requirement graphs are

constructed directly, without consideration of test programs (because they are the product of

dependence analysis, we will usually call approximate function requirement graphs function

dependence graphs). An approximate algorithm for constraint computation is then employed

to convert the dependence graphs into constraint graphs, which are used in code generation

just as are the exact constraint graphs produced by the theoretical model. The discussion

of dependence analysis, approximate constraint computation, and code generation is found in

Chapters 6, 7, and 8, respectively. The reader should bear in mind, however, that the design

of the left side of Figure 5.1 was motivated by the needs of the right side. Some aspects of

the theoretical model we present in this chapter may seem mathematically extraneous; they

are there to maintain a close connection with what actually takes place in dependence analysis.

Perhaps the best way to view the requirement theory developed in this chapter is as a formal

model of data dependence.

The plan of this chapter is essentially that of the left side of Figure 5.1: we discuss the

requirement relation and requirement graphs, constraint computation, and conclude with a

discussion of complexity and the definition of approximate constraints.

5.1 Required Reductions

Definition 5.1 Let ASOt '.s1 be the set of reductions for a program So to some derivable form
S1, So F* S1 . Then for a,fl E AS6S- *s l , / requires a if a is reduced before #3 in every reduction
sequence from So to S1.

We note that requirement is transitive and antisymmetric, and so requirement forms a partial

order on the set AS0 I'S.

Theorem 5.2 Let al,... ,an be a permutation of AsO° *S1. Then So P- " ,,. S is a valid
reduction sequence if and only if the permutation is consistent with the requirement relation
on ASOF ' Sl.
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Proof. The only if side is true by definition. To prove the if side, suppose So I-, . S. S1 is

consistent with the requirement relation but not a valid reduction sequence. Let a, (1 < i < n)

delimit the valid prefix of this sequence; that is, let i be such that So - ... F"-, S' -* S1 is

a valid sequence but So I-a -.. - S" -* S is not. Now by Theorem 4.13 the former sequence

must be of the form

So FI i ... F.1  * 1" Sa-a F S&F ScP F- Sl

where i < a1 ,... ,a < n. But because the original sequence is consistent with the requirement

relation, for all ai it is not the case that a., must precede a,, and so by the contrapositive of

Theorem 4.15 (strong dependence), a, must exist in S., and we can commute a,, and a to

obtain:

so -", ... F-,_ 1 S,'., . S- I-a, Sd F-o. Sc F-' SI

Continuing this process eventually leads to a valid sequence So - ... S " -* SI. Contra-

diction. v

We therefore see that the requirement relation gives a necessary and sufficient ordering

condition for the construction of an execution sequence from one state to another. Naturally,

we are particularly interested in the case of the requirement relation from an initial program

to its normal form. We are also interested in the requirement relation from an initial program

to some weak normal form, but given that a program has many weak normal forms we need

to establish some connection between their respective requirement relations. The following

theorem does the trick:

Theorem 5.3 Let So * S, -* S2 and let Aso'' *S and A 5GF' s 2 be the set of redexes reduced
in an execution So F* S and So -* S2 , respectively, with associated requirement relations
IISo **s  and Il so-* -h. Then (a) As o '*s2 D ASOtFSI; and (b) Il s ° * S1 is equal to the restriction

of IISo '3S onto ASoI *s .

Proof. (a) Choose any path from So to S1 and any path from S to S2 . The first path consists

of elements of ASo*s, ; the concatenation of the paths give the elements of AS° ' , which

therefore contains As$S' SI.

(b) Suppose there were A, 32 E As .s'$1 such that (131,132) E II s oF' s 2 but.(3i,,3) I ISoI *S,.

Then there exists a sequence So -* S1 where /32 precedes 31, and so P2 precedes #I in some

sequence So F-* S, I-* 2. But then (01,/32) f llSOF*S2; contradiction. Conversely, suppose
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there were AA E As%-°$9 such that (3,,#) IIs -' ° s 2 but (/31, #2) EI1 s 'S . So there is a

sequence from So to S2 that looks something like this:

t /3a/3/3aalia

where each 3 denotes an element of AsO'°s and each a denotes an element of As1-*s 2 . Now

because So f-* S1 and by the contrapositive of Theorem 4.15 (strong dependence), we can always

commute a03 with an a, so that we get construct a sequence of all 3's followed by all a's, with

/3,2 preceding 31. By Theorem 4.14, the/1 portion of this sequence is So F-* S1. Contradiction. I

This theorem says that additional execution of a program adds no new requirement rela-

tionships between the redexes that were already reduced.

Corollary 5.4 The same requirement relationship holds between two redexes a and 0 in any
execution sequence beginning with a state So that includes them both.

Proof. Immediate by applying Corollary 4.9 (confluence). *

5.2 Program Requirement Graphs

When constructing object code, we do not really care about all of the reductions performed by

the functional quads reduction system, mainly because substitution reductions happen "auto-

matically" in sequential quads (see the discussion in Section 4.4). To focus our attention on the

actual computation performed in a reduction sequence, we introduce the following definition:

Definition 5.5 Identifier X (°) is reduced at step i in a reduction sequence So, Si,... if Si-1
contains a binding X (°) - E and Si contains a binding X( °) = V, where V is a value and E is
a non-value expression. By convention, X(°) is reduced at step 0 if So contains X( °) = V.

Alternatively, by considering Figure 4.3 we can say that X is reduced at step i in a sequence

So 'a S K'a2 .-. if ai = (X,p), where p is either Rla, R2, R4, R6, or R7. The terminology is

a little funny here: when we say X is reduced at step i, we really mean that the expression on

the right hand side of the binding for X is reduced at step i. Because functional quads requires

a separate binding for each subexpression, this terminology gives us a way of saying when each

subexpression of the program is reduced to a value. Thus do we use identifiers as proxies for

the expressions to which they are bound.

77



Definition 5.6 X1 precedes X 2 in an ezecution sequence So, S,... if there exists ij such that
X1 is reduced at step i, X 2 is reduced at step j, and i < j. X 2 follows X 1 if and only if X,
precedes X 2.

Given that, we redefine requirement as a relation on identifiers instead of on redexes:

Definition 5.7 X 2 requires X, in a program So if for every non-deadlocking execution of So in
which X 2 is reduced, X 1 precedes X 2. By convention, if there is no non-deadlocking execution
of So in which X 2 is reduced, X 2 does not require any X 1 .

In this definition, we are using the term "non-deadlocking execution" in the sense of Defini-

tion 4.19 under the lenient strategy; we restrict our attention to non-deadlocking executions

because we only care about compiling programs correctly when they produce answers. Notice

thdt both precedence and requirement on identifiers are transitive, antisymmetric relations. We

also note that Theorem 5.3 may allow us to determine requirement relations between identifiers

without reducing a program to normal form, so that we can determine requirements between

identifiers even for programs which have no normal form.

To illustrate these concepts, Figure 5.2 shows all possible reductions of a small program.

Each path from the top to the bottom of the figure is a possible reduction sequence, and a step

is labeled with an identifier if that identifier is reduced at that step. Now there are some paths

for which y precedes z, and some where the reverse is true, but in every path, y and z precede x,

and x precedes 0. So x requires y and z, and 0 requires x, y, and z. We can summarize these

results in a requirement graph, a directed graph with a vertex for every variable (i.e., arity 0

identifier) of a program, and a path for every requirement relationship.

We first define the vertex set.

Definition 5.8 The local variables of a binding list, CV[BI;... ;B, ;], is the set of variables
defined as follows:

CV[Bi;... ;B.;] = LV[BI]U...UCVIB. ]

LV[X(°) - E;j = {Xo} UCV[E]
LVIF(") x, . . .X {.. ] = @

'CV [ i f P then (B,; ;...; Bj,,,; in YJ]

i Bs,;* ;B,.; in Y.I1 = LV[Bt,i;... ;Bt,n;JIuV[B,i;... ;Be,.;I

LV[E] = 0, if E is not a conditional

The first line applies whether the binding list is a state or is extracted from a block. The active
variables of a program So, AV[Sol, is the subset of LV[So] such that X E AV[Sol only if X is
reduced in some lenient execution of So.

78



z z; x *ypo*,; y 2*; 3 a 4*5;

M x; z = Tog; y - 6; a a 4*5; x; x yes; y 2*3; x 20;

z; x = 6*s; y• 6; z a 4*6; -. z; w y T; y 6; a = 20; - x; z y #.20; 7 - 46; a - 20;

x :; x 45*; y 6; x a 20; 0 x; x- 7*20; y - 6; z - 20;

- x: z a 620; Y 1 6; -20; Requirement Graph

- x; x 26; Y - 6; x 20;
x

- 26; x - 26; Y - 6; x - 20;

Figure 5.2: Lenient Rewritings of a Program

The local variables of a program are all variables which could be assigned a value during

execution of the program, excluding those variables created when a function is invoked (i.e.,

a Rule R8 rewrite). Because of the restricted syntax of functional quads, every subexpressioii

of the program has a corresponding local variable. The active variables of a program further

exclude those local variables which are never reduced to values in any execution of the program

(because they are in a conditional arm that is never selected, for example). It is very important

to recognize that the local variable set of a program is a static property, which depends only on

the syntactic form of the program, while the active variable set is a dynamic property, whose

composition depends on which variables get reduced during execution.

Definition 5.9 The requirement graph of program So is % directed graph RSo = (V RSO),

where V = AV[So] and R- ° is the smallest set such that u -- + v iff v requires u in So.

The vertices of the requirement graph include only those variables which are reduced in some

execution of So. The edges comprise the transitive reduction of the requirement relation for that

79



program, where the transitive reduction of a graph is the least graph such that its transitive clo-

sure is the same as the transitive closure of the original graph. In other words, the requirement

graph contains no edges that can be inferred from the transitivity of the requirement relation.

We note that because the requirement relation is acydic, the transitive reduction is unique [1],

and so the requirement graph is always well-defined. The requirement graph for the program

in Figure 5.2 is shown in that figure's inset.

Before moving on, we should address a small technical detail in our definition of program

requirement graphs. If a program starts out with a binding X = V, where V is a value, then

every other identifier will appear to require X, simply because X is a value in step 0. Similarly,

if such a binding appears in an inner block, any binding that becomes a value after the block

is added to the state will appear to require it. We remedy this with a restriction: programs for

which we construct requirement graphs should not contain a binding of the form X = V either

in a state or in an inner block. This restriction is easily met by changing such bindings to X =

const V.

5.3 Function Requirement Graphs

The program requirement graph only gives information about a particular program. Note that

our definition of a program includes what would ordinarily be considered input data, the input

data being contained in the bindings of the initial state. Compilers generally do not have the

benefit of having a program's input data; instead, for each function it must compile code which

behaves properly regardless of its arguments. To do this, we will test a function's behavior

on a particular set of inputs to get a requirement graph for that input. We will then combine

the requirement graphs obtained from testing the function on every possible input, to arrive at

graphs which summarize the behavior of the function independent of input.

Definition 5.10 Given a function F(l) with definition:

F X 1 ... X,, = {B1 ; ... Bin; in P};

a test program for a function F(') on input (V,.. VN) is the following program:

0 = P; X1 = const V1 ; ... ; Xn = const V,,; B1 ; ... ; Bn

The requirement graph of F on input (V 1,.. V , iF V) is the requirement graph of the

test program for F on (V 1 ,. .. , V).
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08 b; x - coast 3; a. coast 6; a - xe; b = a+a; 3,6)

a
* b; z w 3; - coast 6; a = ixO; b = a*z; * - b; z = coast 3; a -6; a = x*; b = a*z;

z X b

Ana

Figure 5.3: Test execution off x z = (a = x*6; b = a+z; in b} on (3,5)

An example of a test program and its associated requirement graph is shown in Figure 5.3.

Essentially, the test program simulates the state that results after a call to F is expanded, and

so its requirement graph gives the requirement relations that hold when F is called with the

tested input.

The definition of test program and requirement graph above holds even if procedure calls

(rule R8 reductions) take place during execution of the test program. Because the vertex set of

the requirement graph is a subset of F's local variables, the requirement graph will not contain

vertices corresponding to bindings added to the state when procedure calls are executed, even

if those calls represent recursive calls to F. On the other hand, the computation that goes on

within the body of the called procedure will be reflected in the requirement graph, because

that computation can create requirement relations between the portions of F which compute

arguments for the call and the portions of F whicl' receive the results. One minor technicality:

if F makes procedure calls, then naturally the test program for F must include the definitions

of all procedures that might be called by F or its children.

For any given function F, all requirement graphs on various inputs will have the same set of

vertices, but may have different edges due to conditionals. For example, the following function:
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fxyza

{p - x < 0;
a = if p then

{b - y + z in b}
else

{s = const 6; c = y + s in c};
d-a+7
in

dj;

yields one of the two following requirement graphs, depending on the sign of x:

Z<O Zx: 0

Sb C7'\ -

Note that the vertex sets are not identical; the second graph, for example, has no vertex for b,

since b is not reduced in any execution where the first argument is positive.

Let I F be the set ofR F  for all (V,...,Vn) such that there is a non-deadlocking

execution of the test program for F on (V 1,.... V,). We then define the following three graphs:

RC = transitive reduction of f (u, v) I u R+ v in all (V, R) E Ii s.t.v V }

RF = j(uv)j3(VR)Es.t-u-R V}= U R

Rp = RF-RC

V= U V

(VR)E7

Rc (V,Rc)

F = (V,RF)

p = (V, Rp)

(We have omitted the F superscripts everywhere.) RC is the certain requirement graph, RF is

the full requirement graph, and Ap is the potential requirement graph. Basically, paths in the

certain requirement graph say when a requirement relation exists for all arguments, while in
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the full requirement graph they say when one exists for some set of arguments. The potential

requirement, being the difference between the two, indicates requirement for some but not all

arguments--this graph exists only as a convenience, since it carries no additional information.

For the earlier example, we get the following graphs:

nA,

P P P£ pO 05
C b/

a a

dd dO

If the reader is puzzled by the asymmetry in the definitions of Rc and RF, we point out that

if Rc were simply the intersection of all edge sets in 7 , in the above example RC would not

contain paths from p and y to a. Rc, AF, and Ap describe the requirement relations for a

function in the following way:

1. u R--+ v if and only if v requires u for all arguments.

2. u v---+ v if and only if v reqlires u for some set of arguments; moreover,

3. For all argument sets (V... , V,) there exists a subset R C RF such that u __R+ v if and
only if v requires u given input (VI,..., V,).

There is one additional property which is not immediately obvious: 4p contains no paths that

are present in Ac (we leave the proof to the reader; it depends on the fact that every R E 1?

is a transitive reduction). Throughout the remainder of the thesis, we will use a graphical

convention which combines Ac, AF, and Ap into a single figure, by using solid lines to denote

edges in Rc, and dashed lines for Rp. For the previous example, this gives:

X y

C

p c

a
d
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An edge in RF can be inferred from the presence of either a solid or dashed line. 1

We should point out that in consolidating all the requirement graphs in 7Z into just three

graphs, Ac, AF, and Ap, we inevitably lose information. Specifically, we know that for each

set of arguments there is a subset of RF which reflects the resulting requirement relation, but

there are also many subsets of RF which do not correspond to any set of arguments. Thus,

we lose the information regarding correlations between different potential requirements. This

is one fundamental limitation of our analysis framework.

5.4 Constraint Computation

The requirement graphs for a function summarize the set of legal execution sequences for that

function given various inputs. We now show how to take this information and convert it into

constraints upon generating object code. The constraints are in the form of two more graphs:

the separation graph, which indicates when two subexpressions must be assigned to different

sequential threads, and the a priori ordering constraint, which indicates the relative ordering

between subexpressions when assigned to the same thread.

At first glance, it would seem that ordering object code is simple: RF contains a path

from u to v whenever v requires u for some input, and so we have that u must precede v in

sequential code. Generating object code would be nothing more than a topological sort of AF.

Unfortunately, life is not so simple, for while the requirement graph for any particular input to

a function must be acyclic, RF can contain cycles.

Figure 5.4 shows a small function (similar to the one from Section 3.1.3) along with its

requirement graphs (again, using the solid/dashed convention). The cycles arise because for

negative values of x, a and aa must be evaluated before b and bb, while for positive values of x

the reverse is true. As we discussed in Section 3.6, the code which computes aa and bb must

be placed in separate threads, so that either relative ordering is possible at run time. On the

other hand, a and aa may be placed in the same thread, but if they are, a must precede aa. In

general, cycles in AF will result in separation constraints.

To convert the requirement graphs into ordering constraints, % e note that for every input to

the function that results in a non-deadlocking execution, there is a subset of RF which reflects

'Technically, this convention is ambiguous because there may be some edges in Rc but not in RF. For any
such edge, however, there will always be a path in AP, and as far as the analysis is concerned we could just
as well add these edges to Rp. In fact, we could have unioned Rc into the definition of RF, but there is no
mathematical reason to do so, and it seems superfluous to do so just for the sake of the graphical convention.
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conditional-example x
{p ax >0; 0
a a if p then bb else 3;
b a if p then 4 else a&; ab
aa a 5 a bb
bb a b + 6; a: bb
c a +b; c
in

Figure 5.4: A Function with a Cyclic RF

the requirements for that input, but there are also extraneous subsets which do not correspond

to any input. So we must first restrict our attention to those subsets which are reasonable, by

defining the admissible requirement subsets, ZADM, as follows:

IZADM = {RIRCRFAR + DR+ARisacyclic}

= {RUR cRCRFARURcisacycic}

Recall that for any particular input, the requirement graph must be acyclic; a cyclic requirement

graph would not be reasonable. On the other hand, we do not need to consider any subsets

of RF which do not include all the paths of Rc, since we know that the requirements in R c

exist for all inputs. So the reasonable subsets of RF are as defined above.

Given the reasonable requirement relations, we can consider which instructions must precede

one another during execution. As an intermediate step, we construct precedence graphs:

Pc =R

PF = {(u,v)j3RE1ZADMs.t.U-_R+ v1= IU R+
REP-ADM

PP = PF-PC

Pc = (V, Pc), PF = (V, PF), and Pp = (V, Pp) are the certain precedence graph, the full

precedence graph, and the potential precedence graph, respectively, and have an edge from u

to v when u must precede v for all inputs, for some input, and for some but not all inputs,

respectively.

For every pair of subexpressions, there are six cases of precedence (plus three symmetric

variations), as shown in Figure 5.5. In the figure, a solid line denotes an edge in PC, while

a dashed line denotes an edge in Pp; interpreting these cases reveals how to construct the
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Case 1 Cue 2 Caae 3

a precedes v a precedes v inadmissible

Case 4 Case 5 Case 6

inadmissible no a priori constraint u separated from v

Figure 5.5: Partitioning Constraints Implied by Precedence Graphs

separation graph and the a priori ordering constraint. In case 1, u must precede v for every

input, so u should precede v if assigned to the same thread. In case 2, u must precede v for some

input, so again u should precede v when assigned to the same thread, so that the object code is

properly ordered for that input. Cases 3 and 4 will not occur because they are inadmissible: an

edge in Pc from u to v implies a path in AC], so if there were path in the opposite direction in R,

R would be cyclic. In case 5 there is simply no constraint at all, a priori (see the discussion

below). Finally, in case 6, u must precede v for some input, but v must precede u for some

other input. In this case u and v must be placed in separate threads so that either ordering is

possible at run time. Mathematically, the separation and ordering constraints are:

S {u, v}(u,v),(v,u)EPpI
A {(u,v) I(u,v) EPF A(v,u) fPF}

The separation graph . = (V, S) is an undirected graph with an edge between pairs of subexpres-

sions that must be assigned to different threads. The a priori ordering constraint, X4 = (V, A)

has a directed edge between u and v if u must precede v when assigned to the same thread.

To illustrate, here are the constraints inferred from the precedence graphs for the function

in Figure 5.4 (the transitive edges in A have been omitted for clarity):
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S A

XO x

ac b a b

aa bb aa bb

o C

To partition this program into threads, we need only color the separation graph,2 each color

representing a thread. Each thread is then ordered according to the ordering constraint. For

the example program, we see that at least two threads are needed, and that the a's must be in

a different thread from the b's, as we expect. More details are given in the next section.

Before proceeding to partitioning, there are two possible points of confusion we would like to

address. First, the reader may be confused by the large number of graphs we have introduced.

There are really only two pairs of graphs which are of importance: the function requirement

graphs Ac and AF, and the constraint graphs S and X. These graphs have direct analogs in

the actual compilation process described in succeeding chapters (see also Figure 5.1); all of the

other graphs we introduced in this chapter were merely intermediate steps in the requirement

and constraint graphs' definitions.

The second point of confusion is the repeated appearance of transitive reduction and transi-

tive closure in the definitions we have given. We started with requirement relations for test pro-

grams, took their transitive reduction to arrive at test program requirement graphs, combined

these into function requirement graphs AC and AF (with an intermediate closure/reduction

step), and finally took transitive closures in defining the precedence graphs upon which the

constraint graphs § and X were based. Why were we so concerned with defining RC and RF

as transitive reductions when we were going to take their transitive closures anyway? This

is where the mathematics of the theoretical model was influenced by what goes on in a real

compiler based on these techniques. Remember that we intend to construct approxiliations

of RC and RF directly from the source program. In so doing, we will consider local relation-

ships: how a subexpression makes use of the values produced by the variables it references; the

transitive information is redundant, and so we should not have to obtain it during analysis. In
2A k-coloring of an undirected graph assigns an integer i, I < i < k, to each vertex such that adjacent vertices

are assigned different integers.

87



fact, we will give algorithms for converting requirement graphs into constraint graphs which

avoid the taking of transitive closures altogether. Again, the point is that Ac, AF, §, and A

are the important graphs, and all of the transitive closure and reduction is simply the most

mathematically convenient way of defining them precisely.

5.5 Partitioning

We stated earlier that partitioning is simply a matter of k-coloring S and sorting the threads

according to 9. There is, however, a small hitch in this procedure: if there is no edge between

u and v either in S or in A, then there is no a priori constraint on their relative ordering

if assigned to the same thread, but that does not mean that every such pair can be ordered

independently. To illustrate what is meant, consider the following situation:

ba

Here we haw four subexpressions a, b, c, and d, with no separation constraints and two a

priori ordering constraints, indicated by the solid arrows. They have been partitioned into

two threads as shown, where the flow of control in each thread runs from top to bottom. The

thread orderings are independently consistent with the ordering constraint, but the net result is

incorrect, as there is no interleaving of these two threads which satisfies the ordering constraints

that exist between threads. The problem is that when subexpressions are assigned to the same

thread, new precedence relations are added by virtue of the sequential nature of a thread. This

is why the ordering constraint is only an a priori ordering constraint, since assigning other-

wise unconstrained subexpressions to the same thread propagates new precedence constraints

through the graph.

The upshot is that the program is partitioned into threads by coloring the separation graph,

but when the ordering within each thread is chosen care must be taken not to introduce any

new cycles in the requirement graph. To formalize this, we first define what we mean by a

partition.
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Definition 5.11 Let V be the vertex set in the requirement (and constraint) graphs of a proce-
dure. A partitioning of V is a set E = {01,... ,On}, where each thread Oi is an ordered sequence
of vertices vlvi,2 ... vi, 101 , vij E V, and where each element of V appears in exactly one position
in one 9i E 0.

Given requirement graphs Ac and RF and constraint graphs 9 and 1, a legal partitioning

of V must satisfy the following conditions:

i. If there is an edge (Vi,k, vj,i) E S, then vi,k and vj,l axe assigned to separate threads (i.e.,
i j).

2. If (vi,k, vi,,) E A and vi,k and vij are assigned to the same thread, then vi,k precedes vi,j
in the thread (i.e., k < 1); moreover,

3. Adding edges

U U (vi,,vi,+i)

to RF must introduce no new cycles into RF; that is, RF must have the same set of
strongly connected components before and after the edges are added.

We claim that if code is compiled from a partitioning satisfying these three conditions, then

for any input to the program there is an interleaving of the threads that corresponds to a valid

execution sequence for that program on that input. Interleaving is defined as follows:

Definition 5.12 An interleaving of the threads in 0 is a permutation of the union of all
elements of threads in 0, vt,,i, Vt2 ,i2 . . vt,in, such that for alla < b < n if ta = tb then ia < ib.

In other words, statements taken from the same thread must appear in the interleaving in the

same order as in the thread.

The correctness of 5, A, and the conditions outlined above is proved in the following theo-

rem.

Theorem 5.13 Let 0 be a legal partition of V given requirement graphs AI and AF, according
to the definitions of S and A given earlier and satisfying the three conditions outlined above.
Then for any admissible subset R E RADM of RF, there is an interleaving of the threads in 0
which is consistent with the partial order expressed by R.

Proof. By construction of the appropriate interleaving. We begin with the set of threads 0

and the graph R, and "mark" vertices as they are added to the interleaving. At each step,

some vertices will be marked, and we add one more vertex to the interleaving as follows (see

Figure 5.6):
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01,1 021 03,1 Mw1 . ,2-- -- -- -- -. ........ 2,3 2,2 3 ,3

01,2 \ 02,2 0 3,2
.- 11,3 1,2

01,3 @2,3 03,5 , . ,

01,4 03,4
3,4

Figure 5.6: Construction of a Consistent Interleaving

1. Find all the unmarked vertices which are not pointed to in R by any unmarked vertex.

2. For each thread Oi, find the first unmarked vertex vi j (that is, the vertex 'Vif(,) such
that vi is marked for all j < f(i)).

3. Choose any vertex from the intersection of (1) and (2); add this vertex to the interleaving
and mark it.

Because in (1) we choose vertices not pointed at by unmarked vertices, we visit R in topological

order. Likewise, in (2) we choose the first unmarked vertex in a thread so that we visit the

threads in interleaved order. It remains to show that in step (3) there is always at least one

vertex from which to choose.

We note that R is acyclic, and because the partitioning 0 adds no new cycles to RF,

R U U,,,(v,,, vij i) is also acyclic; call this graph k. (In order for 1? to be acyclic for all R,

0 must be consistent with the separation graph.) Now suppose that the intersection in step (3)

were empty; then for all 1 < i < 10'j, 0' being the set of threads that have not yet been

completely marked, there exists j1 and k such that (v,,k, vijf(j)) E R, k > f(j) (with the latter

condition due to V,,k being unmarked). Now consider the reverse of R. For all i, there is a path

V1,f(i) - Vj~k- Vjjf(j) for some j. There are therefore arbitrarily long paths in the reverse

of k, and therefore it, along with the unreversed k, is cyclic. Contradiction.

In Chapter 7 we discuss efficient partitioning algorithms that F.atisfy the three conditions

enumerated earlier.

5.6 Complexity and Approximations

We now have a complete theoretical basis for the production of sequential threads from non-

strict programs. By modeling execution of the program in an abstract reduction system, func-
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tional quads, we arrive at requirement graphs for each function which summarize the necessary

and sufficient conditions upon the relative orderings of subexpressions for every non-deadlocking

execution of that function. By considering all reasonable patterns of requirement, we arrive

at the separation and ordering constraints, which express the essential constraints upon the

proctuction of threads in order to preserve correct non-strict execution. Through coloring and

topological sorting, these constraints can be employed to actually produce object code. At all

stages of this process, we have taken care to isolate the minimum necessary constraints, so

that our theoretical framework is not biased by any particular choice of algorithm or analysis

technique.
3

Understandably, the theoretical framework cannot be directly employed in an actual com-

piler. The requirement graphs for a function are uncomputable: to derive a requirement graph

for a program we must examine all non-deadlocking executions, but to know that an execution

is non-deadlocking we must know that it terminates, i.e., solve the halting problem. Even if we

were able to obtain the requirement graphs, we can show that converting them to the constraint

graphs as defined is NP-complete (this is proved in the appendix to this chapter, Section 5.7).

Nevertheless, the framework is an important tool for understanding at an abstract level

the technique of non-strict compilation, and also serves as a mathematical standard by which

actual compiler algorithms may be judged. In this section, we define formally what it means

to approximate the theoretical ideal.

Definition 5.14 A constraint set is a triple (V,S,A) where (V,S) is an undirected graph,
(V,A) is a directed graph, and {u,v} E S =* (u,v),(v,u) f A. A constraint set (V,S,A)
approximates another constraint set (V, S, A), notation (9, S, A) _ (V, S, A), if the following
hold:

vc
{u,v}ES f u,v}E

(u, v) EA * (u, v) EA V f{u,v} E

In other words, an approximation to code generation constraints must have more constraints,

although the approximation need not include an ordering constraint between two vertices that

have a separation constraint in the approximation. Also, the approximation may include extra

vertices, with arbitrary edges to and from them.

3As we have remarked, however, the framework has a fundamental limitation in that it does not preserve
information about correlations between potential requirements.
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Theorem 5.15 J_ is a partial order; i.e., a reflexive, transitive, antisymmetric relation.

Proof. Straightforward. g

We will use the approximation relation -1 to compare methods of obtaining requirement

graphs and methods of converting requirement graphs to constraints. Mathematically, we can

view the process of constraint computation as a function from requirement graphs to constraint

graphs.

Definition 5.16 A requirement set is a triple (V, R%, RF) where (V, Rc) and (V, RF) are di-
rected graphs, (V, R) acyclic, and if u v then u - v. A constraint computation function
is a function from requirement sets to constraint sets. The standard constraint computation
function, CCo, is defined as follows:

CCo((V, Rc,RF)) = (V,S,A)

where S = {{u, v} I (u, v),(v, u) Pp}
A = {(u,v) I (u,v)E PF A (v,u) f PF}

Pc = R +

PF = {(u,v) J3 E 1ZADM s.t. U .+ V} = URERADM R+

PP = PF- PC
IZADM = { R I R C RF A R + D R+ ARis acyclic}

= {RURcIRCRFARURisacyclic}

The standard constraint computation function CC 0 just summarizes the equations we presented

in Section 5.4; it is the theoretical standard. We extend the definition of ] to apply to constraint

computation functions and also to requirement graphs as follows:

Definition 5.17 Given two constraint computation functions CC 1 and CC 2 , CC 1 ;! CC 2 if
CC1((V, Rc, RF)) 9 CC 2((V, RC, RF)) for all requirement sets (V, Rc, RF). Given two require-
ment sets (V, Rc,RF) and (,RC,Rp), (V,RkC,RF) Q (V,Rc,RF) ifCCo((f;, kF)) _
CCo((V, Rc, RF)), where CCo is the standard constraint computation function.

In Chapter 6 we describe a method of deriving requirement graphs which approximate the

actual requirement graphs for a function, and in Chapter 7 we discuss approximate constraint

computation functions.

5.7 Appendix: NP-completeness of CCo

We commented that computing constraint graphs from requirement graphs using the standard

constraint computation function CCo is NP-complete. In this appendix we prove that fact.
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To begin, we define a graph problem called Constrained Connected Acyclic Subgraph, equiv-

alent to deciding membership in PF, and show that it is NP-complete. The definition of the

problem is as follows:

Constrained Connected Acyclic Subgraph (CCAS)

INSTANCE: Directed graph G = (V, E) with specified vertices s, t E V and partition of E into
"solid" edges ES and "dashed" edges ED, Es n ED = 0, Es U ED = E.

QUESTION: Is there a subset ED' C ED such that the graph G' = (V, ES U ED') is acycic
and there is a path in G' from a to t?

We will prove that CCAS is NP-complete by reducing an arbitrary instance of Exact Cover

by 3-Sets (X3C) to CCAS. 4 X3C is known to be NP-complete [26]; we reproduce below the

definition given there:

Exact Cover by 3-Sets (X3C)

INSTANCE: Set X with 1X1 = 3q and a collection C of 3-element subsets of X.

QUESTION: Does C contain an exact cover for X, i.e., a subcollection C' C C such that every
element of X occurs in exactly one member of C'?

For a given instance of X3C, we construct an instance of CCAS in which the vertices V

consist of a source a, a sink t, and a grid of pairs of vertices uij and vij, in which each row of

the grid corresponds to an element of X and in which each column corresponds to an element

of C. (See Figure 5.7.)

Formally, let N = IXI and M = ICl. Let Row : X -+ A be a bijection from X onto [1,N]

and COL : C --* Ar be a bijection from C onto [1, M]. Furthermore, let RoW -1 and COL-1 be

the functit,- 1 inverses of Row and COL, respectively. V is then defined as:

V = {s,t} U u ., vj 1 1 < i < N, 1 <j < M, Row- 1 (i) E COL-'(j)}

The basic idea is to provide entirely dashed paths which start at s, pass through every row

in sequence, and arrive at t. A particular path will therefore cover every row (and therefore

every x E X), using some subset of the columns (i.e., some subset of C), and each such path

induces a subgraph consisting of the edges on the path plus all the solid edges. We include

solid back edges between pairs of columns that represent non-disjoint 3-sets, so tha. any path

4The author is indebted to Serge Plotkin, who after consultation with David Johnson suggested the construc-
tion used for this reduction.
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Figure 5.7: Construction Reducing X3C to CCAS

that does not correspond to an exact cover will have a back edge between two of its vertices.

In this way, only those paths corresponding to exact covers will induce acyclic graphs.

The dashed edges are as follows:

ED = { (ui,,,i) I Ut, v,,3 E V } U { (v,, uti+,k) I v, , u.+I,k E V }
U f (,.uxj) I u j E V } U f (VN,. I ,,Nj E V }

There is a dashed edge between each u and its corresponding v, and a dashed complete bipartite

graph between the vs of one row and the us of the next. In addition, there is an edge between a

and every u of the first row, and between every v of the last row and t.

The solid edges are:

Es = U { (Vi,COL(q),Uk,COL(C 2 )) I iOW-(i) E cl, Row (k) E c2 , k < i}
€ ,€2 GC
C1 M C0

Since solid edges go only from vs to us, there are no solid paths of length greater than one.
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Lemma 5.18 An instance of XSC has a solution if and only if the constructed instance of
CCAS has a solution.

Proof (Only If): Let C' be the solution to the instance of X3C; we construct a solution to the

corresponding CCAS instance as follows. Since C' is an exact cover for X, there is a bijection f

from X onto [1,M] such that f(z) = ROw(c) where z E e and c E C'. Let z1 ,X2 , .. . ,z N be the

elements of X such that tow(zi) = 1, Row(z 2) = 2, etc. Then the following is a path in G

composed entirely of dashed edges:

89 UI, (zl ), Vi,f(xl ), u,/(x2), V2,f (z2v ... ,9 UN, (N) ), VN, (N) I, t

Such a path exists by construction. Let ED' consist of only those edges on the above path. It

remains to show that G' = (V, Es U ED') is acyclic. Since there are no solid paths of length

greater than one, the graph is cyclic only if there is a solid edge between two vertices along the

dashed path. But solid edges only occur between pairs of columns corresponding to non-disjoint

members of C. Since C' is exact, it contains no such pair. The dashed path, therefore, does

not pass through any pair of columns between which there is a solid edge, and so there can be

no solid edge joining two vertices along the path. G' is therefore acydic.

(If): A solution to CCAS is a set of dashed edges ED' and a path from a to t. Given a solution,

we first construct a canonical solution in which the path is composed entirely of dashed edges.

By construction, an entirely dashed path must take the form:

89 UI,CO L(cl),t VI,CO L(c),i U2,CO L( ) ,9 V2,CO L(c),...,7 UN,CO L(CN), I 7N, COL(CN ), t

where e1 ,c2 ,... ,CN E C and are not necessarily distinct. If a path from s to t contains solid

edges, it must contain one or more segments of the form:

... s V ,OL(c.), Uj,COL(b), .. . ,Vi,COL(c,), W,...

where j < i, and w is either a u vertex or the final t. The solid edge is (Vi,COL(c.),ui,COL(b)),

and the segment preceding vi,COL(c,) may also contain solid edges. Intuitively, a solid edge

causes the path to jump back from a v vertex to a lower-numbered u vertex (or to a u in

the same row). But if the path ultimately reaches t, it must par through every row between

this lower-numbered row and the last row, and in particular it must pass through row i again,

although perhaps in a different column (i.e., c. and cc are not necessarily the same). Now if

this segment is part of a solution to CCAS, then it can be replaced by just:

95i,COLc.,W, .
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thereby deleting the solid edge(s). There is guaranteed to be an edge in ED between V,COL

and w by construction; this edge may have to be added to ED' if it was not already present.

Adding this edge cannot introduce any new cycles since the two vertices involved were already

connected by a path. By repeating this transformation, we arrive at a solution to the CCAS

instance in which the path is entirely dashed.

Given an entirely dashed path, the solution to the X3C problem is:

C' = { c I Vi,COL(c) is on the path )

Since the path passes through every row, the columns through which it passes must correspond

to 3-sets which form a cover for X. Since the path passes through each row only once, the cover

is exact. v

Theorem 5.19 CCAS is NP-compiee.

Proof. A potential solution to an instance of CCAS is verified by checking for connectivity

between s and t, and by checking for the acyclicuess of G'. Since both tests can be performed in

polynomial time, CCAS is in NP. An arbitrary instance of X3C can be converted to CCAS using

the construction proved in Lemma 5.18. The conversion time is O(M 2 N), being dominated

by the construction of N bipartite subgraphs, each of size O(M). Since X3C is known to be

NP-complete (26], and since the conversion time is polynomial, CCAS is NP-complete. g

Looking at the definitions of 7ZADM and PF, we see that deciding whether an edge (8, t) is

in PF is exactly the same as solving the CCAS problem where the solid edges are the edges

of RC and the dashed edges are the edges of RF. To be completely rigorous, we note that to

decide membership in S we do not necessarily need to decide membership in PF: we just need

to decide whether a pair of edges (u, v),(v,u) are both in PF. Thus, the problem for which we

really need to show NP-completeness is the following:

Constrained Doubly Connected Acyclic Subgraph (CDCAS)

INSTANCE: Directed graph G = (V,E) with specified vertices s,t E V and partition of E into
"solid" edges Es and "dashed" edges ED, Es n ED =0, Es U Ep = E.

QUESTION: Are there sabets ED' C ED and ED" C ED such that the graph G' = (V, Es U
ED') has a path from s to t, the graph G" = (V, Es U ED") has a path from t to s, and both
G' and G" are acyclic?

Theorem 5.20 CDCAS is NP-womplete.
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Figure 5.8: Construction Reducing CCAS to CDCAS

Proof. We reduce an instance of CCAS to CDCAS with the construction illustrated in Fig-

ure 5.8. Given the CCAS problem, we add new vertices s' and t', and dashed edges (s', s),

(t, t'), and (t', a'), where 9' and t' are to be the distinguished vertices in the constructed CD-

CAS problem. We claim that the constructed CDCAS problem has a solution if and only if the

original CCAS problem has a solution. To prove the if side: to go from a' to t' use the CCAS

subset together with (3', a) and (t,t'); to go from t' to s' use the CCAS subset with (t', s'). To

prove the only if side: the CDCAS subset which goes from 9' to t' must include the edges (s', S)

and (t, e), and so it also provides a path from a to t.

19

k

t9



98



Chapter 6

Dependence Analysis

In the last chapter, we defined requirement graphs for a function which summarize the order-

ing relationships that exist for all non-deadlocking executions of that function. As we noted,

requirement graphs are uncomputable, since we need to know if a function deadlocks on a

particular input. Even if we were willing to restrict our attention to functions which always ter-

minate without deadlock, we would still have to simulate all possible executions on all possible

inputs in order to compute the requirement graph, a clearly infeasible approach.

In this chapter we explore methods that approximate the requirement graph of a function

through various analysis techniques, which we collectively call dependence analysis. We first

extend our earlier discussion of approximate requirement graphs by giving criteria for judging

the correctness of an approximation directly in terms of requirement graphs. We then develop

dependence analysis techniques for functional programs. We begin by restricting our attention

to simple cases of programs which do not use data structures and do not make procedure calls.

We then extend the analysis to handle function calls, data structures, and finally higher-order

functions. We find that strictness analysis and variants thereof are useful tools in performing

dependence analysis. Given a proposed dependence analysis method, it is incumbent upon

us to show that it yields safe approximations, and we will demonstrate such proofs for the

simple cases. We conclude by showing how the ability to feed the result of a function back into

its arguments in non-strict functions is largely responsible for the need to compile them into

multiple threads.
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6.1 Approximate Requirement Graphs

In Section 5.6 we defined what it means to have an approximation to a requirement graph: an

approximate requirement graph yields no fewer constraints than the exact requirement graph

when both are subjected to the standard constraint computation function. It will be conve-

nient, however, to characterize approximate requirement graphs directly in terms of the exact

requirement graph. We will give two such characterizations, each as sufficient conditions on an

approximate requirement graph to guarantee safety.

For reference, we repeat here the definition of the standard constraint computation function:

CCo((V, PC, RF)) = (V, S, A)

where S = {{u,v) (u,v),(v,u)EPp}

A = {(u,v) I(u,v)EPFA(v,u)fPF}
Pc = R+

PF = I{(u,v)I3R E IAm st-u. V}
PP = PF- PC

IZADM = { R R C RF A R+ D R + ARis acyclic}

6.1.1 Characterization I

Theorem 6.1 (P, !?, AF) _ (V, Ac, RF) if the following hold:

VU,, vEV, u--.+ V 4 u- --+,v
3 acyclic R C RF, C ; R+ , u_ R + v *- 3 acyclic R' C &F, R'+ D +, u Ri+ V

Proof. In proving this result, it is helpful to work with the intermediate graphs Pc, PF, and Pp

that are part of the definition of CCO. From the conditions given above, we immediately have:

Vu, v V, (u, V) E Pc (u, v)E Pc

(U, ) E PF (u, v) E PF, and therefore

(u, ) E Pp * (u, ) E Pp

Let (V, S, A) = CCo(V, Rc, RF) and (9, 9, A) = CCo(iP, kc, F). We show that each of the

conditions for (V, 9, A) Q (V, S, A) hold:

Immediate.
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{U, v) E S 4 {u,v} ES
We have {u, v) E S * (u, v) E Pp 4- (u, v) E Pp, and symmetrically we get (v, u) E Pp.
So {uv} E S.

(u,,v) E A =:(u, v) e A V {u, V} E
We have (u, v) E A :o (u, v) E PF :* (u, v) PF. There are two cases. If (v, u) f PF

then immediately (u, v) E A. If (v, u) E PF, then we also note that (U, v) E A * (v, u) f
A =: (v, u) V Pc #- (v, u) PAc, and therefore (v, u) E Pp. But (v, u) E PF *0 (u, v) 0 Pc
(because of the admissibility criterion), and so we have (u, v) E Pp and thus {u, V} E

6.1.2 Characterization II

The sufficient conditions for safety derived in the last section will be useful in some proofs to

be developed later (see Section 6.10, for example), but do not provide very much intuition. We

can, however, give conditions which do.

Theorem 6.2 (, AC, AF) - (V RC, RF) if the following hold:

(A#C)(V RC
AF RF

Proof. The first two conditions are the same as the first two conditions from Characterization I

(the second is just stated differently). The third condition is just a special case of Characteri-

zation I's third condition, as we leave the reader to verify. I

These axe much more intuitive, although they are more restrictive than the conditions in the

last section. The first equation just says we need at least the vertices of the exact requirement

graph. A+ _ R + says that we should not claim a certain requirement relationship between

vertices in the exact graph unless it exists there too; if we did, we might make inadmissible a

potential dependence subset that actually arises for some input. On the other hand, there is

no harm in including extra transitive edges in Ac, which is why we have A + C R+ instead

of Ac g RC. Similarly, AF 2 RF says that at least we must claim a potential requirement

relationship for every certain or potential requirement relationship that actually exists, for if we

omit some we might fail to observe a necessary ordering constrain. We have AF 2 RF instead

of 11+F 2 RP because the latter does not guarantee that all paths in RF will have admissible

counterparts in AF.
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6.2 Outline of Dependence Analysis

We wish the computation of approximate requirement graphs to be simple and efficient, so that

it can realistically be performed by a compiler. To this end, we will define functions which

compute the graphs by a simple recursive descent on the syntax of the program, possibly using

the results from other types of analysis (e.g., strictness analysis, type deduction) as input. The

rules we give will compute the approximate requirement graph of a function independently from

other functions of the program, and so our method is compatible with separate compilation of

functions (although the strictness and other analyses we require as input may not be compatible

with separate compilation).

The term "approximate requirement graph" is a bit cumbersome, and so we will term

the particular approximation described here dependence graphs, in light of their being derived

from a consideration of data dependence. We will give the dependence graphs their own sym-

bols DC and DF (and Dp, for convenience), and we claim that for any function we have

(1), Dc, DF) 9 (V, R0 , RF) where Ac and AF are the function's exact requirement graphs.

Given a function definition:

F(") XI ... Xn - {BI; ... ; Bm; in X};

the "top-level" of dependence analysis is as follows:

V = {Xo,...,X,,)uVIBI; ...; B] Iu{'}

Dc = VC[BI; ...; B.] U f{(X,0))

DF = Dc U Dp

Dp = VP[B1; ... ; Bm

Dc = (V,Dc)

BF = (V, DF)

Dp = (V, Dp)

The vertex set V can be recognized as just the local variables of a test program for F (the

definition of local variables, CV, was given on page 78). This, of course, is a superset of the

vertices in the exact requirement graphs for F (it may include some extra vertices if F has some

local variables that are never reduced to values). The auxiliary functions PC and VP which
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define the edges of the dependence graphs are a case analysis on the grammar of functional

quads. We give the first cases below:

DC[Bi; ... ; Bj = DC[BIuU...UDC[Bi
D P[BI; ... ; B,! = DP(B1j U... U DPIBiI

So a function is analyzed on a binding-by-binding basis. We will give the remaining cases in the

sections that follow, as we consider more and more complicated types of expressions. Before

proceeding, however, we wish to introduce two restrictions on the programs we analyze which

will simplify the presentation.

First, we restrict the input syntax so that values only appear in a const V binding; all

instances of Primary in the grammar (Figure 4.1) should be considered Identifier. This is only

a restriction on the program submitted as input to analysis; if we were to start rewriting this

program, the substitution rules would propagate values to other positions within expressions.

There is nothing deep about this restriction: it is merely to reduce the number of cases we

consider. Without the restriction, for example, there would be four cases of an arithmetic

expression, corresponding to the choice of Value or Identifier for each of two operands.

The second restriction has to do with internal definitions; that is, a binding of the form

Identifier(") Identifier ... Identifier - {... } occurring in the body of another function. In gen-

eral, such a definition may have free variables: identifiers which are defined in the surrounding

scope. For the purposes of identifying requirement relationships, such free variables behave

like formal parameters, as every call to the function must implicitly pass in the free variables.

There is, of course, considerable variation in how this implicit parameter passing may be im-

plemented; the free variables could be passed in as ordinary parameters, or the function could

be compiled to fetch them from an environment located in the heap or on the stack [50]. The

implementation details are irrelevant as far as the requirement relations are concerned, and so

we may as well treat free variables as additional formal parameters to the function. hi other

words, we will perform the lambda lifting transformation [42] which adds the extra parameters

and moves the internal definitions to top level. We then need only consider top level definitions

during analysis, even if the lambda lifting transformation is not actually used to generate code.
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6.3 Arithmetic Expressions

We start by considering programs composed only of arithmetic expressions, so that the only

kind of Value we allow is Scalar, and the only kifds of Simple are const Value, Identifier, and

Identifier Op Identifier.

The cases we add to DC and DP are:

McIX - cat Cl = 0
MI[X - Y1 = {(YX))

DC[X Y1 Op Y21 = {(Y1,x),(Y 2,X)}

DP[X -coast Cl = 0
DlIX - Y] = 0

DP[X - Y1Op Y2I = 0

Notice that for this restricted class of programs, there are only certain depcndences. This is to

be expected, for without conditionals the order in which subexpressions are evaluated cannot

depend on input data.

For example, given this program:

fyz=
(a * const 6;
b a 4y;
C y Z;
d b c;
in
d);

The vertex set V is (y, z, a, b, c, d, 0), and the dependence graph is:

d d

*6

To see the intuition behind the rules, recall that we have a certain dependence only when

there is a certain requirement, and that a certain requirement between u and v means that

u must be reduced to a value before v can be. Clearly, then, an arithmetic operation requires
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both its operands, hence we add an edge to the left hand side variable from each of the two

variables on the right hand side.

We now prove the safety of VC and VP as defined so far:

Theorem 6.3 The rules above always yield safe dependence graphs.

Proof. (Sketch) To show that Dc g Rc, note that all edges in Dc are from Y to X in

statements like X a Y Op Z. The right hand side cannot be reduced as long as Y is not

substituted, so Y always precedes X. Since Dc _ RC, D+ C R+ . To show that DF 2 RF, we

must show that if (X,Y) f DF then there is some execution where Y precedes X. From the

definition of DC, (X, Y) f DF means that Y is not a "syntactic descendant" of X, where by this

we mean that Y's right hand side has no occurrence of X, nor of any identifier whose right hand

side has an occurrence of X, etc. Now suppose we have an execution where X precedes Y. From

it we can construct an execution where Y precedeE X by using Theorems 4.8 (commutivity) and

Theorem 4.15 (strong dependence) to commute redexes as follows. In the reductions between

where X is reduced and Y is reduced, there are redexes involving syntactic descendants of X,

those involving syntactic predecessors of Y, and those involving neither (there are none involving

both, because then Y would be a syntactic descendant of X). All but the syntactic descendants

of X can be commuted to appear before X, and all but the syntactic predecessors of Y can be

commuted to appear after Y, leaving a valid sequence where Y immediately follows X. These

can then be commuted to arrive at the desired sequence. I

In fact, from the proof we see that for this restricted class of programs, the dependence

relation is exact. Because of the tedium of these safety proofs, we will not give them for other

types of expressions, relying hereafter on intuition to convince ourselves of correctness.

6.4 Conditionals

The rules for conditional expressions are as follows:

IX = it Y then {Bti;... ;Bt,; in Y} 1CDcelse rB,;... ;Be,,; in Y] = {(Y,Z) I ZE VIB,;... ;B,,;]}U

{(Y,Z) IZE EV[B.;... ;B,,,,;]}u
)CjBt,.,; ... ;Bt,.;]u

VC[B, ;... ; Be., ;Ju
{(Y, X)}
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I[X = if Y then {Bt,j;...;Bt,n; in Y}
vP r els* (B,i;... ;B.,m; in Y}] {(Y'X),(YeX)}U

VDP[Bt,; ;... ;Bt,.; ;]U

Basically, we are asserting that nothing in either arm can become a value until the predicate

is known, that the left hand side cannot become a value until the predicate is known, and that

for some inputs the left hand side further requires the result of one arm, and for other inputs

the other arm.

To illustrate, we present again the example from page 82 along with the dependence graph

generated by the above rules:

fxyz-

{p - X <0;
a = if p then

b = y + z in b- ps
else

s - const 6; C

c - y +*s in c};a
dfa+7

in
d);

(We are cheating a bit by not introducing const statements for the scalars 0 and 7 that appear

in the program; in so doing we are implicitly assuming the appropriate clause for PC that

handlee arithmetic expressions with one value operand.) We leave it as an exercise for the

reader to compare this dependence graph with the requirement graphs on page 83 and use

Theorem 6.2 to verify that the dependence graph is safe.

These rules for conditional expressions can be improved. For one, we note that we add

many transitive edges to DC, which are unnecessary. In the program above, for example, an

edge between p and c is included, even though there are edges between p and s and between

s and c. So we can amend the rule by saying that any transitive edges added to Dc can be

removed. This has no effect at all on the quality of our analysis, but may allow a compiler to

deal with significantly smaller data structures.

A more important improvement is that if there is any v such that there are paths in Dc

from v to both Y and Ye, then we should add an edge from v to X to Dc. In other words, if

both arms of a conditional certainly depend on some variable, then so does the result of the
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-w - - - - - ----

conditional. In the example above, this amendment would add a solid edge from y to a, which

was present in the requirement graph on page 83 but did not appear in our original dependence

graph.

6.5 Interlude: Dependence Analysis vs. Strictness Analysis

We recall that a function f is strict in its ith argument if f(vl,... , v- 1 , 19, v 1, ... ,v,) = .L

for all v,... , vi-I , v+ 1 , ... , v.. Now suppose the function f is expressed in functional quads:

f X, ... Xn - fB,; ... B,,; in PJ;

A test program for f on input vi,... ,Vn is:

0 - P; X 1 - const vi; ... ; X, - const v.; BI; ... ; Bn

In functional quads, an expression cannot directly gain any information from a variable; instead,

the variable must be substituted into the expression, which in turn requires that the variable

be reduced to a value. So, saying that a variable X is never reduced to a value is equivalent

to saying that X = .I (see the denotational semantics and discussion in Section 4.7). Now

in the test program for f above, 0> is reduced to the value computed by the function, if it

computes one. So we can rephrase the definition of strictness in terms of reducing identifiers in

the test program, as follows: f is strict in its ith argument if 0 cannot be reduced to a value

as long as Xi has not been reduced to a value. In other words, f is strict in its ith argument if

0> requires Xi for all inputs.

From this definition of strictness, we see that saying a function is strict in an argument

is equivalent to saying that there is a path from that argument to the answer in the certain

requirement graph for that function. We note that requirement and strictness are both unde-

cidable properties of a function. But as dependence analysis yields an approximation to the

requirement relation, it also yields an approximation to strictness, and is therefore a form of

strictness analysis. Strictness analysis and this aspect of dependence analysis share the same

safety condition: strictness analyzers are designed to never falsely claim strictness, while safe

dependence analysis does not falsely claim a certain requirement relation. So we see that our

certain dependence rules are just another way of doing strictness analysis.

In the next section, we will turn this argument on its head, and use strictness analysis to

assist in adding certain dependence edges to a dependence graph. Before moving on to this,
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however, we wish to point out a connection between potential dependence and a variation on

strictness analysis. We can define what it means for a function to ignore an argument as follows:

Definition 6.4 A function f of n arguments ignores its ith argument if

(x, I... ,Z,.11.i ... IzX) = A211 Ii- ., ziziI, z+I, ., I,)

for all Zl,... ,Z,.

This is a property that can be analyzed using methods similar to strictness analysis; examples

include the strictness analyzers of Wray [241 and of Hughes and Wadler [77]. If a function ignores

its ith argument, then for no input does the result of the function require that argument, and

so ignoring an argument implies a lack of a path from the argument to the result in the full

requirement graph. To summarize:

Strictness Property Requirement Graph Property

Strict in ith argument (Xi, 0) E R +

Ignores ith argument (Xi, >) 0 R+

6.6 First-Order Functions

In this section we consider first-order uses of functions. To do this, we allow partial applications

to appear in a program, but only as part of a binding of the form:

X - (F( n) Y ... Y,- 1 ) Y.;

We suppose that a strictness analyzer is available to us, which computes the following two

functions:

Strict(f) = { i I f is inferred to be strict in its ith argument }
/gnored(f) = { i I f is inferred to ignore its ith argument }

Either of these functions can be approximated by the empty set if unavailable. We then add

the following two cases to VC and PP:

DC[X - (F n) Yi ... Y-) Y;j = {(Y,X) liE Strict(f)}

DP[X = (F( ) Y1 -.. Y,- 1 ) Y ;I = {(Y, X) I i f Strict(f) A i f Ignored(f) }
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Again, this is fairly intuitive: X requires Y1 if F is strict in that argument, does not require it

if F ignores that argument, and may require it otherwise. We can gain a deeper understanding

by seeing how a function call is rewritten during execution of a program.

Suppose we are analyzing function F, which makes a procedure call to another procedure G,

where F and G are defined as:

F X, ... X, {BFi; ... ; BF; in X};
G Y1 ... Y., (Bcn; ... ; Bom; in Y};

where somewhere within the body of F there is a binding

Z - (G Z, ... Z.,_,) Z.,;

Our analysis of F is trying to approximate the requirement relationships that hold for

various test programs for F. Now consider such a test program at the point where the call to G

is reduced. We have the following two steps:

... ; Z - (G Z ... ZR9.lZ.,; ...

; Y'; Y' - Zi; ; -4 Z,; B'

In expanding the call to G, we add bindings to the state which are isomorphic to the bindings

that would exist in a test program for G. Suppose that G is strict in its ith argument; then

in every test program for G the answer is never reduced to a value unless Yi is. In the state

above, then, Y' and therefore Z cannot be reduced to a value until Y' and therefore Z is.

So Z certainly requires Z when G is strict in its ith argument. Likewise, if G ignores its

ith argument, then given any test program for G there is an execution in which the answer

is reduced to a value before Yi is. So in the state above, if we have some execution in which

Z and therefore Y' is reduced to a value, we can find an execution in which Z is reduced to a

value but Y/' is not, and from there we can find one in which Zi is not. So Z definitely does

not require Z, when G ignores its ith argument. Hence, the rules for dependence given above

are safe, assuming the strictness analysis method we use is also safe.

At this point, it is reasonable to ask why we have bothered to bring strictness analysis

into the picture at all, since it seems to tell us nothing that we did not already know through

dependence analysis. Putting it another way, since we are going to perform dependence analysis

on all functions of a program anyway, why not use the paths found in analyzing G to supply
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dependence arcs for a call to G contained in F, I fact, this approach is technically feasible,

but has pragmatic difficulties if functions are recursive or mutually recursive. Suppose F calls

itself. In analyzing the dependences for F, we need to add arcs to the vertex that represents the

recursive call, which in turn requires that we have already analyzed F so that we know which

arguments have certain paths to the output, and which have no path at all. This sort of chicken-

and-egg problem occurs whenever any kind of analysis is performed on recursive programs, and

the usual solution is to set up a recursive equation describing the analysis, and solve by finding

least fixpoints. There is no theoretical problem in applying this technique here; we could set

up equations for DF and DF which were expressed in terms of paths through DF and DF ,

and solve to obtain the dependence graphs we desire (see [31] for an example of this kind of

graphical fixpoint equation). In fact, the equations that would be obtained are isomorphic

to the recursive equations that might be solved by a conventional strictness analyzer.' So in

some sense the choice between setting up recursive graph equations or appealing to an outside

analysis technique is simply a matter of taste. We felt that bringing strictness analysis into

the picture is instructive for two reasons: one, it eliminates the need for us to describe the

mechanics of recursive graph equations and proving that the necessary fixpoints exist; and two,

it illustrates how the information obtained from analysis techniques other than the ones we

propose can be incorporated directly into our framework.

Our earlier discussion of how strictness summarizes the input/output dependences of a

function validates our rules for obtaining a dependence graph for a top-level function F, where

the dependence graph approximates the requirement relations we obtain from test executions

of F. On the other hand, there is no guarantee that the requirement relations for test executions

of G will hold among the bindings for G added to the state when G is called from F. Specifically,

G may be used in a context where its output is eventually fed back into one of its arguments,

which would impose additional requirement relations between subexpressions of G. These must

be taken into account when compiling code for G. We will defer this point until Section 6.9,

however, as we cannot illustrate it with reasonable examples until after we have added data

structures to the language.

'Specifically, we conjecture that they would correspond to the equations solved in backward analysis analyz-
ers [24, 77], since the dependence graphs do not encode correlation between potential requirements.
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Figure 6.1: (a) Unsafe Dependence Graph; (b) Requirement Graph

6.7 Non-Flat Domains

We now attack dependence analysis for programs that use data structures. In addition to

all the constructs allowed so far, we add Struct to the allowable values and the expressions

eel-t-i Identifier and isut? Identifier to the allowable Simples. Now consider the following

small program, wherein duple is a 2-ary data type:

{c - <dupl.,x,d>;
d n duple-sel.1 c;
* a duple._el.2 c;
in
o)

Our first thought is to consider just the data constructors and selectors as ordinary functions,

and use the rules from the last section to analyze this program. A data constructor is not strict

in either argument (since <dupl,.L,.I> = (1, . 6) L ), nor does it ignore either argument

(since <duple,.L,4> 6 <duple,3,4> $ <duple,3,.L>). A selector, however, is strict in its

argument: duple.sel. I = L. Applying the dependence rules developed so far, then, gives

the dependence graph in Figure 6.1a. Unfortunately, this graph is not a safe approximation of

the actual requirement graphs for f. We can return to first principles and derive the require-

ment graphs by considering all executions of f, arriving at the graph in Figure 6.lb. As we

would expect, a certainly requires d, but this relationship is absent from the dependence graph

obtained from the strictness rules. If we used the dependence graph in Figure 6.1a to obtain an

ordering constraint, it would lack an edge from d to e, and so we might compile code in which

* appears before d in a sequential thread. Such code would be incorrect.

To understand why dependences involving data structure primitives cannot be inferred

based on their strictness, we must remember why strictness worked for finding dependences

through ordinary function calls. We observed the state resulting from reducing a procedure

111



call, and concluded that the requirement relation for the caller should be equivalent to splicing

in the requirement relation of the callee into the caller's graph. We could therefore summarize

the effect on the caller by considering the paths from arguments to result in the requirement

graphs of the callee, and we had showed already that this summary information was obtainable

from strictness analysis. So strictness analysis was just a shortcut that simulated the reduction

of the function call, transforming the program into a form without function calls, for which

we already knew how to find dependence graphs. Now if there were some way of expressing

data constructors and selectors in terms of the arithmetic expressions and conditionals that we

already know how to handle, we could expect our current methods to apply to data structures

as well. Unfortunately, there is no way to express a non-strict data constructor in terms of

arithmetic and conditional expressions. 2 There is no logical reason, therefore, for the strictness

of constructors and selectors to summarize correctly the dependence relationships that hold

through them, and, as our example showed, it does not.

The failure of our previous methods arises because data structures carry more than one

atomic piece of information. If a variable is bound to a scalar expression, then before it becomes

a value the variable carries no information to the places which use it, and after it becomes a

value it carries all the information it will ever carry. For a scalar variable, being reduced to a

value is the only event which can make any difference to its consumers. A data structure, on

the other hand, carries several pieces of information, which may become available to consumers

at different times, owing to non-strictness. That is, if a variable is reduced to a value that is

a data structure, some consumers may have all the information they need, but others may not

because not all components have become values. If those components become values at some

later time, the other consumers can proceed.

The fallacy in Figure 6.1a is that d and e are treated as if c's being reduced to a value were

the only event of interest to them. E needs the value of c, but since d does also, the production

of c cannot depend on d, and so a dependence from d to e is ruled out. In reality, of course,

o depends not only on c's becoming a value, but also on the second component of the data

structure becoming a value. It is true that c's becoming a value cannot depend on d, but having

its second component become a value does.

2Non-strict data constructors can be expressed in terms of conditionals and higher-order functions, but we
have not yet shown how to handle higher-order functions. In the next section we invert this observation and use
the technology we develop for data structures to handle higher-order functions.
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a- <dupl*Zxy>;
b a;
i =is-duple? b;

j seld.upl.-1 b;
k uel-duple.2 b;

Ali k

Figure 6.2: Program Illustrating Artificial Dependence Vertices

We can analyze this behavior with an artificial device that introduces a distinct vertex into

the graph for each distinct piece of information carried around in the program. Suppose for

a moment that the only data structure we allow is a two-tuple of integers, and consider the

program fragment shown in Figure 6.2. b carries not one but three distinct pieces of data: the

two components of the structure plus the information that b is of type duple. The variables i,

J, and k are sensitive to different combinations of these pieces: i only requires the type of b,

j requires the first component but not the second, and vice versa for k.

To model this situation in dependence graphs, we can use three vertices for each non-scalar

variable, each vertex corresponding to one of the three pieces of information carried by that

variable, as shown in the graph at the right of the figure. The two vertices with the top subscript

represent "top-level" values; the shell of the data structure that just carries the information

about its type. The other four subscripted vertices represent components of the data structures,

with the lateral arcs reflecting the fact that a component cannot be accessed without also having

the shell. In other words, for a component of b to have a value, b itself must have a value.

This trick of adding vertices to represent data structure components allows the dependences

for each atomic piece of information to be traced separately. In the program above, for example,

we see that j depends on x but not y, and that i depends on neither x nor y. If we return to

the program we tried to analyze at the beginning of this section, where we arrived at the unsafe

dependence graph in Figure 6.1a, the new method arrives at this dependence graph:
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This graph properly reflects the dependence between d and o.

We should point out that the extra vertices added to the dependence graph are truly ar-

tificial, in the sense that they do not correspond to any expression in the original functional

quads program. Consider again the program and graph in Figure 6.2. In compiled code for this

program, executing the binding b a a simply fetches a pointer to a data structure from a and

stores it in b. The dependence graph vertex corresponding to this computation is bt,,P, since

the copying of the pointer makes the top-level shell of the structure available to consumers

of b. On the other hand, b, and 62 correspond to no instructions in the compiled code; the

components of b become values implicitly when the arguments to the data constructor become

values. In general, only the top-subscripted vertices will be of interest when generating code,

and so once we have computed the separation and ordering constraints from the dependence

graph, the artificial vertices will be discarded (this is the main reason why the definition of the

approximaton relation J_ allows extraneous vertices). We will return to this in greater detail

when we take up code generation in Chapter 8.

Adding a vertex for each distinct value within a data structure was feasible when we re-

stricted ourselves to two-tuples of integers, but runs into difficulties when we allow general data

structures, whose components may themselves be any data structure. The problem of course,

is that each variable can carry an unbounded number of atomic values, so we would need an

unbounded number of artificial vertices:

_a --- 4 -, I - ,a . I : = :::.

a,

Of course, this figure only illustrates the case where the only kind of data structure is a two-

tuple; the situation is correspondingly more complex as the number of data types increases.

The way around this problem is to collapse the infinite set of vertices for each variable into

a finite set. To do this, we need two lemmas which we illustrate pictorially in Figure 6.3. The

idea is that we can combine two vertices of the dependence graph in a safe way, that is, so that

the constraints obtained for the other vertices of the graph are a safe approximation to the

constraints of the uncollapsed graph. A formal statement and proof of the collapsing lemmas

can be found in the appendix to this chapter, Section 6.10.
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Figure 6.3: Collapsing Lemmas

One thing to note is that the edges leading to and away from collapsed vertices are always

potential dependences, even if in the original graph some of the edges were certain dependences.

This is not surprising; because we make one vertex track several independent values, there are

no dependences which apply to all the values the vertex represents (an exception is illustrated

in the first lemma; both collapsed vertices have a certain edge from the vertex x, and so this

edge can remain as certain). It is safe for all of the edges to be potential, however, because there

are always subsets which correspond to the dependences through each of the original vertices.

Of course, when we collapse vertices of the dependence graph, we inevitably lose information;

in this case, we lose precision in tracking the various values contained in data structures. We

are therefore faced with a design decision as to what set of artificial vertices to collapse for each

variable; Figure 6.4 shows some possibilities. Type information is valuable here, for we may

wish to tune the choice of artificial vertices for a variable to match the type of that variable.

If a variable is of type 2-tuple, for example, then the vertex set shown in Figure 6.4c seems

logical: we track each component separately, collapsing subcomponents if the components are

themselves data structures. On the other hand, for an array type it is infeasible to track

each component separately since the number of components is not known until run time, and

in fact may differ from one invocation of the function to the next; Figure 6.4b seems the

appropriate choice.- Recursive types such as lists might benefit from yet a different approach,

such as one that collapses all "heads" into one point and all "tails" into another. 4 If no type

3Arrays admit a whole other dlam of analysis techniques generally referred to as subscript analyis [15]. The
idea is to show that for no input can two array index expressions overlap; this information could be used to
eliminate potential dependence arcs in our framework. This is a good topic for future research.

'This is roughly what Wadler and Hughes are doing when they analyse 'head strictness" and "tail strict-
ness' [77].
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Figure 6.4: Some Possible Collapsings for Data Structure Variables

information is available, or if the language is not strongly typed, then the natural choice is

two-point approximation (Figure 6.4b), which just distinguishes between a top-level value and

the components. Using only a one-point approximation does not yield good results, because the

collapsing lemmas end up turning all dependence arcs into potential dependences. Investigating

the properties of various sets of points is a topic for future research; for the remainder of this

thesis we consider only scalar/non-scalar type information and use the two-point approach.

We now present the complete set of rules for doing dependence analysis under a two-point

approximation for non-scalar variables. Given a function,

F() X 1 ... X, - {B; ... ; B,; in X};

The two-point dependence graphs are given by:

V = {Xo,...,X,,)UCVIBI; ... ; B,,,] U{}

V2 = {z ,Z I Z EV)

Dc = DCA[BI; ... ; BIu {(X", 0 )}U U {(z,Z)}
ZEV

DF = Dc U Dp
Dp = VP 2 B,; ... ; En,, U {(XO, COO)}

13c = (V2,Dc)

BF = (V 2,DF)

FP = (V2,Dp)

The vertex set has two vertices for each variable: the 0-superscripted vertex represents the

top-level value, and the oo-superscripted vertex the other values. There is a certain dependence

between each "top-level" vertex and the corresponding "other" vertex. If we have scalar/non-

scalar type information, then we can eliminate the oo-vertex for any variable that is known to
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be a scalar at compile time.

VC 2[BI; ... ; BAJ = VC2 [B1 ] U... UU VC2 IB[
VP 2[B1 ; ... ; B = DP2[B2] U ... U D'P2[BI]

VC2 X - const C] = 0
DC21X - Y1 = {(Y 0,X°)}

VC2[X - Y Op Y21 = f( ,X'),Cy°,X°)

DP 2[X - coSt C] = 0

DP2[X - Y1 = {(Y',X')}
'P2[X - Y Op Y2  = 0

C denotes any scalar value. A simple binding has parallel edges between the 0 vertices and

between the cc vertices, but the oo vertices must be potential because of the collapsing lemmas.

The arithmetic expressions are treated in the same way as before. Conditionals axe also treated

as before:

jX = if Y then (B,,t.;B.,,n; in Y} 1 - ZDC2 relse {B,,,;... ;B.,m; in {(Y 'Z0 ) Z E CV[B,;... ;B,;J}U

{ (Y°,Z°) I Z E £V[B.,I;... ;B.,.;]IU

DC,[B,., ;... ;Bt,;]U
VC 2 0B.,;... ;Be.,m ;]u
{(YO, X°)}

[X * it Y then ;Bt,t;... ;Bt,.; in Y) {
elm. l e.,,;... ;B.,m; in Y.j =  xO)'(Y.'xON

{(Ytoox1), (r0, ,x }U
,P2[B,, ;... ;B,,;]u

7VP2[B,,; ;... ; B,.m;

The interesting rules are the new ones for data structures:

DC2[X - 't(")Yl,... ,Y,>] = 0
D [X <t(n),y,... ,Y,>] = {(yX ), (y 1 ,X),. .

DC2IX - if.t? Yj = {(Y°,X°)}
VP 2[X - Ws.? Y1 = $

DC2[X = .1.t-i Y] = {(Y°,X°)}

VP2[X - uel.t.i Y] = {(YO,X°),(Y ,XO)}
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To complete the definition of DC 2 and VP2 , we must give the rules for first-order procedure

calls. As we discussed in Section 6.6, we want to achieve the effect of splicing in the graph of

the callee into the graph of the caller, by somehow determining the input/output connectivity

of the callee. Again, we would like to use some sort of strictness analysis technique so that

recursion is handled outside the realm of graphs. But ordinary strictness analysis is no longer

sufficient, for we need to distinguish between strictness in the top-level value and strictness in

subcomponents.

To define the kind of strictness information we want, we need to define two auxiliary func-

tions. The first is a predicate which identifies "top-level" values that are free of additional

information (the reader may wish to review the semantic domains given in Section 4.7).

(true ifz=,zEC, z=Ls, orx=(t,,i,...,i,
toponly(z) 

=

I. false otherwise.

The second removes all information save the top-level value:

filter(z)={ t'j ' ''L  ote) wsifz=(t'zl,"",Xn"

I z otherwise.
Thus we have toponly(filter(z)) = true for all z. We then define five properties, P1 through P5.

A function f has property P for its ith argument if the corresponding equation below is true

for allzl,...,ZM.

PI: f(-..,.L,...)=,

P2 : filter~f(..., I ,....) filter(f(..., filter(zj),...))

P3: filter(f(.. .,fiter(z),...)) = filter(f(.... zi...))

P4: toponly(f(..., z,...))V (f(... =,...) f( ... , filter(x,),...))

r5 : toponly(f(..., z,...)) v (f(..., filter(x,),...) = f(- .. , x,,...))

These properties have the following interpretation:

P1 The top level of the ith argument is required to produce the top level of the result.

P2 The top level of the result completely ignores the top level of the ith argument.

P3 The top level of the result does not require any subcomponent of the ith argument.

P4 No subcomponent of the result requires the top level of the ith argument.
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P5 No subcomponent of the result requires any subcomponent of the ith argument.

(Properties P1 and P2 reduce fo odinary strictness and ignoring, respectively, on flat domains.)

Now assume that we have , strictness analyzer which for every function of the program

computes five sets corresponding to the five properties:

pk(f) = { i I Property Pk is inferred for f on its ith argument }

Then the rules for adding dependence edges for a first order call are:

'D2[X (F(n) y1' ... Y-.) Y n;] = f(Yi°,X°) I i Epi(f)}
P[X a (F(") /1' . ..Y,-._) Y,;J = {(Y 0,X 0 ) J i € pI(f) A i € p2(f)}U

{ (Y m, X 0) I i 3(f) }U
f(Yi°,X') Ii f p 4(f)}U

f (Yi, x ) I i 0 ps(f) }

The author has successfully used the Wadler and Hughes context analysis technique [77] to

infer these five properties from functional quads programs.

6.8 Higher-Order Functions

The only remaining functional quads construct is general application, that is, bindings of the

form X - Y Z. The easiest way to reason about this construct is as a call to a primitive

binary function apply, which takes a function and a value and returns the result of applying

that function to that value. Without any further information, then, apply is a function that

is strict in its first argument and may or may not use its -second argument, depending on

what function is being applied. Higher-order strictness analysis techniques are still in their

infancy [16, 36); they attempt to determine for each instance of apply whether that application

will always use or always ignore its second argument.

We shall not delve further into higher-order strictness analysis, but simply present the

equations for the conservative case where nothing is inferred about a general application. Op-

erationally, apply examines the function value Y: if it is a partial application that needs more

than one argument before the arity is satisfied, it just builds another partial application con-

taining the new argument Z; otherwise, it invokes the function over which Y is closed, passing

the arguments recorded in Y along with the new argument Z. These two cases correspond to

Rules R7 and R8 in the functional quads reduction system, respectively.
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The important feature to note is that the function value Y may be a partial application, and

because it may be closed over some identifiers it behaves like a data structure. We therefore need

to use non-flat domain techniques for general applications. In two-point analysis, a conservative

treatment of apply behaves like a function with Property P1 for its first argument and none of

properties P1 through P5 for its second. The dependence equations, therefore, are:

VC24X - Y ZJ = {(Y°,X 0 )}

V1,[X = Y Z] = {(Y-'X°),(Y°,X°),(Y°°X-),
(Z° , X°), (ZOO, X°), (Z° , X-°), (Z° ° , X-°)}

Even without higher-order strictness analysis, though, a compiler may be able to detect that

certain applications will always have unsatisfied arity (i.e., Rule R7 rewrites). In that case, the

top level of X completely ignores Z, and we have the following equations:

)C2[X = Y ZJ = {(Y°,X°)}

VP[X = Y Z] = j(Y',X°),(Y°,X-),(Y-,X-),
( Z- X°), ( Z-°, X-°) I

Choosing vertex sets other than the two-point set and incorporating higher-order strictness

analysis are topics for future research.

6.9 Feedback Dependences

In Section 6.6, we remarked that in compiling code for a function G which is called from other

functions, we must take into account dependences imposed on G by the context in which calls

to it appear. We illustrate with the following example:

fa x +7;

bfx+y; a b
c <duple,a,b>; CO-c o

in l0 f

We show the dependence graph as produced by the two-point rules developed above, where we

have omitted the oo-vertices for scalar variables and all the vertices for the constant 7. There

is no dependence in either direction between a and b, so according to this graph, the compiler

is free to place the two additions in either order within the same thread.

Now consider what happens if g is called from f as follows:
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f X
{p g xq;

q * sel.duple-l p;
in

The first component of the tuple returned from g is fed back into g as the second argument.

If we had compiled code for g which tried to compute b before a in the same thread, the code

would not work properly when called from f, because there is actually a dependence from a

to b when called from this context.

The most conservative way to handle this problem is to include potential dependences from

the output of a function to all of its inputs; for the two-point dependence analysis, this is

expressed formally as:

Dp = DP2 IBI; ... ; B.] U {(X', c')}U
f ( X (( xjI), (0 ,x) 1 < n _ n}

which replaces the definition of Dp given on page 116. Applying this to the example above

gives the following graph:

--------------- i
I'.!

I- r

III I

fe ll

If this graph is used to find constraints, there will be an ordering constraint from a to b, as we

expect.

The reader may be distressed to find that we must add potential dependence edges from

the output to every input of a function, since doing so is likely to introduce many cycles into

the graph, which will lead to many separation constraints and therefore tiny sequential threads.

There are one or two factors which mitigate this problem. One is that in many cases the feedback

edges will be inadmissible and therefore not affect code generation. Specifically, if a function is

strict in an argument, then the feedback edges to that argument will all be inadmissible:
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f xy X

(Z X + Y;1 Z
in

z}

The only subset of the potential dependences here for which the full graph is acyclic is the empty

set-both of these feedback edges are effectively removed by the definition of the constraint

graphs. Another mitigating factor is that the feedback edges are not necessary if the output of

a function is always a scalar. Suppose there were some argument of a function which depended

on the output by virtue of dependences introduced by the caller. That argument will not be

available until the output of the function has been produced. But since the output is a scalar,

once it is produced there can be no new information added to it, and therefore the computation

fed by the argument in question cannot contribute to the answer.

Even with these mitigating factors, that still leaves the vast majority of cases where the

feedback edges will remain present to introduce cycles and induce small threads. This is not

a defect in our analysis technique, but simply the price of non-strictness. We recall that in

all the examples of Section 3.1, the expressive power of non-strictness was gained through the

use of some sort of cyclic dependence, either around a function call, a data constructor, or a

conditional. This is no coincidence; non-strictness is useful precisely because arguments need

not be completely evaluated before a call is made, but there is no reason to delay an argument

unless that argument derives some information from a portion of the value produced by the

call. Hence, the feedback edges are not an unwanted nuisance, but are responsible for all the

benefit the programmer gains from using a non-strict language as opposed to a strict one.

Even though feedback edges are the price of non-strictness, we certainly do not want to

charge the programmer any more than necessary. That is, we should eliminate a feedback edge

whenever we can show that there is no dependence from the output to that argument imposed

by the caller, so that we introduce as few cycles into the dependence graph as possible. We have

no results to present in this area, and simply point out that it is a research problem, perhaps

the most important line of research to improve the quality of lenient compilation. There are

two avenues that could be pursued. One is to analyze all callers of a function G and try to

show that there are no contexts which introduce feedback dependences for some subset of G's

arguments. This requires extensive interprocedural analysis, and is complicated considerably

by the use of higher-order functions. On the other hand, if there are some situations which
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are provably feedback-free, two versions of G could be compiled, one which supports feedback

and another which does not. The other avenue is to allow the programmer to tell the compiler

that there are no feedback dependences for specific arguments, through the use of annotations.

Both of these avenues should be explored to determine their feasibility and effectiveness.

6.10 Appendix: Proof of the "Collapsing" Lemma

In this appendix we state formally and prove the "collapsing" lemmas shown in Figure 6.3.

Actually, both are just special cases of a single theorem. In that theorem, we identify two

vertices a and t, and show that if t is an artificial vertex then t can be collapsed onto . as long

as all edges to and from s and t are turned into potential edges, although certain edges formerly

incident upon both a and t from the same origin can remain certain. We have to state this

carefully: if (V, AC, RF) is the original requirement set and (9, Ac, A4F) the collapsed set, we

clearly cannot have (9, A-, AF) Q (V, Rc, RF) because f V. What we really want to show

is that the collapsed set approximates all the constraints of the original set other than those

involving the removed vertex t.

Theorem 6.5 Let (V, Rc, RF) be a requirement set with distinguished vertices s and t, V =

V U {s,t}, and let R be partitioned into seven subsets according to the endpoints of each edge:
Rc = VVc U VSc U VTc U SVc U TVc U STC U TSC, where TVC, for example, contains the
edges (t, v) ERc for v E V. Let RF be similarly partitioned into seven subsets. Now define the
requirement set where t is collapsed into a as follows:

V = VU{3}

fl = VVcU{(v,s)1(v,s)E VSCA(v,t)E VTc}

AF = VVF U VSF U VSC U SVF U SVCU
{(v, S) I (v, t) E (VTc U VTF) }U
{(a, v) I (t, v) E (TVc U TVF) )

Then for the vertices in 9, (IP, fAc,AhF) Q (V, Rc, RF). That is, letting CCo((fAc,AfF)) =

(9, 9,A) and CCo((V, Ac,RF)) = (V,S,A), then (9,.€,A) g (9,(S 19),(A I 9)).

Proof. We show that for every pair of endpoints u, v E 9, the conditions of Theorem 6.1 are

satisfied by (9, AC, AF). The first condition is trivially satisfied. The second is clearly satisfied

since C ; Ac. To show the third, given any path u .- ;+ v in an acyclIc subset R _ RF that

includes all the certain paths in RC, we must show that there is an acyclic subset A fAF that

also connects u and v and includes all certain paths in Ac. We proceed by cases, based on the
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vertices included along the path u R+ v. Remember, this path can pass through the vertex t,

but cannot start or end at t.

The path does not go through a or t.
The path is contained wholly in VVF, and so is unaffected by the construction. R = R,
and A is therefore acyclic.

The path goes through a: u R _ v.

The same path still exists, and A = R. If for some reason R included edges to or from t
that do not have analogs to or from s, the corresponding edges to or om a can be
eliminated from A, since they cannot contribute to the path u + s -k+ v. Hence,
A is acyclic.

The path goes through t: u R++ t -_R+ v.
The path will now go through a instead. A similar argument as for the last case prevents
the introduction of cycles by eliminating any extraneous edges involving a.

The path goes through s then t: u __.+ . +I t + v.
The corresponding path in the collapsed graph has a cycle from a to a, but that can
simply be short-circuited, and the two a-edges involved in the cycle deleted from A to
make A be acyclic.

The path goes through t then a: u Ri + t .R+ ._R + v.
Analogous to the last case.

The path starts or ends with a.
Either is simply a degenerate case of the case that goes through a. g

The proof reveals the mathematical reason why the edges to and from a and t axe turned

into potential edges: in various cases we needed the freedom to remove them to preserve the

acyclicness of the subgraph containing a given path.

Corollary 6.6 If (V, Azc, F) is the requirement set obtained from performing the collapsing
transformation on another requirement set (i, AC, AF), and (P, Ac, RF) _ (V, Rc, RF), and

furthermore V 2 V, then (V, c, RF) Q (V, RcA F), even though V I V.

Proof. (P, AC,/AF) approximates all the constraints implied by (P, A,, AF) except those in-

volving the collapsed vertex t, but since V D V these are irrelevant as far as (V, RC, RF) is

concerned anyway. g
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Thus, we can view the collapsed graph as an approximation, provided we have no ultimate

interest in the collapsed vertex t; i.e., as long as t is artificial.
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Chapter 7

Constraint Computation and
Partitioning

In Section 5.6 we remarked (and in Section 5.7 proved) that computing the constraint graphs

S and A according to the standard constraint computation function is NP-complete. This

means that, unless P = NP, a practical compiler must be satisfied with an algorithm which

approximates S and A. Any approximate algorithm must meet the safety criteria defined in

Section 5.6. In this chapter, we present such an approximate algorithm.

We first present the basic algorithm, which makes the approximation that all subsets of RF

are considered admissible. We then discuss situations in which this approximation does partic-

ularly badly (produces too many constraints), and offer ways of pre-processing the dependence

graphs and post-processing the constraint graphs so that the approximate algorithm yields

constraints closer to the theoretical ideal. An important side benefit of one of these steps is

that our compilation methods will produce at least as good code as existing techniques for

lazy compilation, given the same strictness analysis as input. Finally, we present an improved

version of the approximate algorithm which has a faster asymptotic running time, and which

also leads to a partitioning algorithm that avoids the pitfalls discussed in Section 5.5.

7.1 An Approximation to Constraint Graphs

Given that computing constraint graphs exactly is NP-completi, we must search for an approx-

imate method. The problem with the exact definition is that it must consider all subsets of RF

to determine which are admissible, introducing the exponentiality that is characteristic of NP-

complete problems. So an obvious approximation is to consider all subsets of RF admissible.
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We call this approximation CCA, and define it as follows.

CCA((V,P&,RF)) =(V,$, A)

where S {u,v) I(u,,),(v,u) E PP}
A (u,v) I ((u,v) E Pc A (v,u) f Pc) A((, v,) E PF A (v,"u) f PF)}

Pc =R +

PF= R

PP = PF- PC

The definition of Pc is unchanged from that in CC0. Going back to the cases for edges in the

precedence graph (Figure 5.5), there is no longer an admissibility criterion to rule out case 4,

so we must interpret it. The interpretation is that if we were using the admissibility criterion,

it would really be case 1, and so there should be a precedence constraint from u to v. This

accounts for the modification in the definition of A.

Theorem 7.1 CCA -D CCO.

Proof. As in the proof of Theorem 6.1, it is helpful here to work with the precedence graphs

contained in the definitions of CC0 and CCA. We see immediately that:

PC= PC
PF 2 PF, and therefore
PpDPp

The bulk of the proof of Theorem 6.1 applies here without modification, the exception being

the very last subcase, where we have (v, u) E PF. Given the modified definition of A in CCA,

the last subcase now follows immediately. j

One algorithm for computing this approximation is simply to take transitive closures of

Rc and RF. The time complexity of transitive closure is no worse than matrix multiply, or

0(n 3 ) where n is the number of vertices (this can be improved somewhat by using tricks like

Strassen's, but in any event worse than 0(n 2 )) [2]. We will present a faster algorithm in

Section 7.3.

7.2 Improving the Approximation

The approximation to S and A given in the last section assumes that every subset of RF is

admissible, and will infer many separation and ordering constraints that would not be present if
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Figure 7.1: Example of Eliminating Inadmissible Edges

the inadmissible subsets were eliminated. We present two techniques which improve the quality

of the approximation.

7.2.1 Eliminating Inadmissible Edges

The most obvious improvement is to recognize that while determining all of the subsets of

requirements which are inadmissible is hard, there are certain potential edges which are them-

selves inadmissible. Specifically, if there is a certain path u R---+ v, then there is no admissible

subset of RF which will include (v, u). We can therefore eliminate all such edges from RF before

computing constraints. While this -would have no effect if we used the exact definition of con-

straint graphs, it makes a significant difference when using the approximation given above. The

most important way it pays off is in eliminating feedback edges to strict arguments of a func-

tion. An example is shown in Figure 7.1; (a) is a dependence graph obtained from the methods

of Chapter 6, (b) is the separation graph computed from (a) by the approximation CCA, and

(c) is the separation graph computed by CCA if the inadmissible edge (O,p) is first eliminated

from (a).

Theorem 7.2 Given a requirement set (V, Ac, RF) and another in which inadmissible edges
have been removed: (V, RC, AF), where AF = R, - { (v, u) Its _ + v}. Then

(a) CCo((V, R, A)) = CCo((V, cRF)); and
(b) CCA((V, Rc, AF)) has no more constraints than CCA((V, C, RF)).

Proof. (a) follows immediately from the construction of lZADM in the definition of CC0 . (b) is

true since eliminating edges from Re can only reduce the size of PF and Pp in the definition

of CCA, and therefore only reduce the size of 9 and A. I

Here is an algorithm for removing all inadmissible edges with 9(11)12 + IVIIRcI) running

time.
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Figure 7.2: Example of Collapsing Strict Regions

for u E V do
Reachable(u) - e
Mark(u) 4- false

for u E V do
if-'Mark(u) then

DFS(u)
for u E V do

for v E Reachable(u) do
Remove (v, u) from RF

procedure DFS(u):
Mark(u) +- true
for each v such that (u, v) E Rc do

if-Mark(v) do
DFS(v)

Reachable(u) +- Reachable(u) U Reachable(v)

This is just a depth-first search of Rc; we can use depth-first search in place of the usual

transitive closure algorithm because RC is acyclic.

7.2.2 Collapsing Strict Regions

Figure 7.2 shows an example of another improvement that can be made to the approximate

algorithm. Part (a) shows a requirement graph, and (b) its approximate separation graph

under CCA. The edge between b and c is extraneous, since there are no admissible subsets of

potential edges for which there is any dependence between b and c in either direction. We now

describe the method of collapsing strict regions, which allows the approximate algorithm to

produce the separation graph shown in (c).

Definition 7.3 A strict region in a requirement set (V, RC, RF) is a subset V C V with a
distinguished exit vertex vo E V such that

1. (RFIV ) = (RC IV).

Rc+2. ForalluE V- {vo}, u + Vo.
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S. For any u E V - {vo} there does not ezist v E V- V such that (u, v) E RF or (u, v) E RC.

The first condition says that all arcs within the strict region are certain arcs (and also therefore

that the strict region is acyclic). The second says that every vertex in the region has a strict

path to the exit vertex. The third says that the only arcs leaving the strict region have the exit

vertex vo as their origin (which is why we call it the exit vertex).

Theorem 7.4 Let V C V be a strict region in (V,RC,RF), a~d,.et CCo((V,RC,RF)) =
(V,S,A). Then for all u,v E V, fu,} f S and (u,,v) E S 4= u M+ + v.

Proof. Considering the definition of CCo, there is no R E IZADM with a path vO _R+ u for any

u E V; because of conditions (1) and (2) above such an R would be cyclic. But condition (3)

implies that any cycle that might involve vertices in V would involve v0, so within the strict

region, PF is acyclic. Thus (S I V) = 0 and (A I V) = (Rc I V)+. I

No matter what approximate constraint computation algorithm we happen to be using,

we can use the theorem above to generate exact constraints for strict regions: there are no

separation constraints, and ordering constraints are in one-to-one correspondence with paths

in the original requirement graph. Alternatively, we can collapse the strict regions to a single

point before constraint computation, and then use the theorem to regenerate the constraints

for the region.

The term "strict regions" arises because they correspond to the sequential threads produced

by existing lazy compilers that use strictness analysis. Consider the following program fragment

(from the source language, not functional quads):

a f t0 (f a b) (f2 (f3 c d) e) (f4 f g);

Now suppose that f1, f 2, f 3, and f4 are each strict in both arguments, and that f0 is strict in

its first two arguments but not its third. Current lazy compilers which can infer this strictness

information will insert forces and delays as follows:

x - delay (tO (ft a b) (f2 (f3 c d) a) (delay (f4f g)));

The compiled code for this fragment would place the calls to f 1, f 2, f3, and f0 all in the same

thread, with the call to 24 in a separate thread.
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... abcdefg
ti f Ii a b;
t2 f2 t3 e;
t3 f3 c d; V
t4 f4 fg; t "

x fO ti t2 t4; "

Figure 7.3: Program with a Strict Region

Now consider what a compiler using our methods would do with this program, given that it

has access to the same strictness analyzer as the lazy compiler; Figure 7.3 shows the program

after conversion to functional quads, and the dependence graph produced for it (to simplify the

figure, we have assumed that all of the variables involved are scalar variables; the discussion

remains the same even if the variables are non-scalar). Because f0 is not strict in its third

argument, the dependence from t4 to x is potential, and the strictness of all other arguments

involved is responsible for the other edges being certain. Now the vertices enclosed in the dot-

and-dashed line form a strict region, and so with the strict region theorem we are guaranteed

not to generate separation constraints between vertices in the region. We therefore can assign

the calls to fi, f 2, f 3, and f0 to the same thread, as the lazy compiler would.

In general, detecting strict regions guarantees that we will never introduce a separation con-

straint between two subexpressions that would be assigned to the same thread by current lazy

compilers, no matter what constraint computation algorithm we use. Hence we are guaranteed

of always generating as large threads as are possible using existing techniques.

There are two more strict region heuristics that warrant some discussion. The first is that an

inverted version of the strict region theorem can be proved, where instead of a single exit vertex

the region has a single entry vertex, with certain paths to every other vertex in the region.

Through a similar proof, it can be shown that in these regions, too, there are no separation

constraints and the only ordering constraints correspond to certain paths. The details are an

exercise for the reader. 1

'The earlier argument about strict regions can be viewed as an alternative justific¢ iion for using strictness
analysis to eliminate delays in a functional program. Mycroft [52] discusses two abstract interpretations of
programs useful for eliminating delays, which he calls E and Eb. The first of these is what is generally termed
strictness analysis, and so its use corresponds to strict regions as defined earlier. It appears that the use of E'
as described by Mycroft has an analogous correspondence to inverted strict regions.
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Figure 7.4: Example of a Strict Region in a Two-Point Dependence Graph

The other point is that the strict region theorems can be extended to handle two-point

and other multi-point dependence analysis. In the two point scheme, the definition of a strict

region would be modified to allow for other vertices in the strict region which are not necessarily

connected by certain paths to the exit vertex (see Figure 7.4). The definition of a two-point

strict region is slightly more complex:

Definition 7.5 A two-point strict region in a requirement set (V, RC,RF) is a subset V C V
partitioned into two subsubsets V = V0 U V , where each subsubset has a distinguished exit
vertex v° E V0 and voo E V', and which satisfies:

1. (RF I V°) = (RC I V°) •

2. For all u E V0 - {vo}, u -+ vo

S. (v° , v')E RC.

4. For any u E V - {v° ,v') there does not exist v E V - V such that (u,v) E RF or

(u,v) E Rc.

It can be shown that among the vertices in V ° , there are no separation constraints and the

only ordering constraints correspond to paths in Rc. The proof is an exercise for the reader.

7.3 Improving the Running Time

The approximation CCA we have been discussing in this chapter is defined in terms of transitive

closures of the graphs obtained through dependence analysis. As we remarked earlier, we can use

this definition directly and use transitive closure algorithms to compute the constraint graphs.

Unfortunately, the best transitive closure algorithms are only as fast as the best matrix multiply

algorithms, so the best constraint computation algorithm will have running time O(JV I3 ) (using
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Strassen's trick, this can be improved to O(tVlo 1*r), and similar tricks may reduce it further,

but in any case never better than O(IVI2 )) [2].

We now describe a faster algorithm, based on the observation that the edges in S are

contained in strongly connected components of RF.

Theorem 7.6 Let CCA(, Rc,RF)) = (V,9; A). Then {u,v} E S if and only if u and v are

in some strongly connected component of RF, (u,v) f R+, and (v, u) 0 R+.

Proof. (If) Since u and v are in some strongly connected component of RF, (u, v), (v, u) E R+ =

PF. (u, v) f R+ and (v, u) f R + further implies that (u, v), (v, u) E R + - R+ = Pp. Therefore

{u,v} E 9.

(Only if) {u, v} E S implies (u, v), (v, u) E R+ - R + , and so in particular (u, v), (v, u) R +

and furthermore (u, v), (v, u) E R+ which means that u and v are in a strongly connected

component. I

This suggests the following algorithm for computing S and A:

1. Find the strongly connected components of AF.

2. For each pair of vertices u, v in a component, there is an edge (u, v) E A if (u, v) E R+ ,

and {u, v} E S otherwise.

3. Form the reduced graph /- of JF (the graph that has a vertex for each strongly con-

nected component of RF and an edge whenever RF has an edge between vertices in two

components). This graph is acyclic.

4. For each pair of vertex sets U,V in k' such that U -_--+ V, there is an edge in A from

every vertex in U to every vertex in V.

Finding the strongly connected components of a graph has running time O(V + E), where V is

the number of vertices and E the number of edges, and finding transitive closures of acyclic

graphs has running time O(V . E) (using depth-first search). So the entire algorithm above has

worst case running time O(IVIIRFI).

7.4 Avoiding New Cycles

In Section 5.4, we pointed out that the lack of an edge in both S and A between two vertices

meant that there was no a priori constraint between them, but when placed in the same thread

care must be taken to prevent the introduction of new cycles. The efficient algorithm for

computing approximate constraint graphs suggests a procedure for ordering vertices so that
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this problem is avoided. Essentially, we will not compute A at all, but instead we will assign

numbers to every vertex such that when two vertices are assigned to the same thread they

should be ordered according to the numbers we assign. We compute these numbers at the same

time the separation constraint 9 is constructed; afterwards, the code generator may partition

the program as it chooses (consistent with 9), but must observe the assigned numbers when

ordering each thread.

The algorithm is follows. We assign two numbers to each vertex, called the major number

and the minor number.

1. Find the strongly connected components of AF.

2. For each pair of vertices u, v in a component, there is an edge {u, v} E 9 unless (u, v) E R+ .

3. For each strongly connected component, perform a topological sort using the edges of RC,
assigning minor numbers to each vertex in the component.

4. Form the reduced graph A' of AF (the graph that has a vertex for each strongly con-
nected component of RF and an edge whenever RF has an edge between vertices in two
components). This graph is acyclic.

5. Perform a topological sort on the reduced graph, assigning a major number to all the
vertices of each component.

When the program is partitioned into threads, each thread is ordered so that u precedes v only

if u's major number is lower than v's, or if the major numbers are the same and u's minor

number is lower than v's. This ordering is guaranteed not to introduce any additional cycles

into RF, no matter what partitioning is chosen.
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Chapter 8

Code Generation

Having seen how to partition a function definition into a set of sequential threads, we turn to

the task of generating actual object code based on that partition. Recall that the output of

the partitioning phase is a set of "threads", where each thread is just an ordered sequence of

identifiers such that each identifier corresponds to a single functional quads statement in the

original function definition. At a very high level, then, object code for a function is generated

by first translating each functional quads statement into a corresponding piece of sequential

code and then arranging those pieces according to the sequences given in the partitioning; the

resulting code sequences collectively implement the function.

There are several factors which distinguish this sort of multi-threaded code generation from

the conventional code generation problem. The most obvious of these is that each function is

implemented by a collection of independent code segments, which therefore must communicate

and synchronize with one another. For example, if thread 1 uses the value of a which is computed

by thread 2, then thread 1 must include code to wait for thread 2 to finish computing a.

Moreover, the location which holds the value of a must indicate to thread 1 whether a has been

computed; it must be equipped with a presence bit, and thread 2 must include code to set the

presence bit when it stores a.

The second factor stems from non-strictness: because function calls and data constructors

are non-strict, it may be necessary to pass values to procedures or data constructors before

they have been computed. For example, to execute the constructor (cons a b), two words of

storage are allocated, and a and b are copied into them. This is easy if the values of a and b

have already been computed, but tricky if they have not. We must somehow provide for copying

values which do not yet exist.
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The third factor relates to the compilation of conditional expressions. The statements

comprising the "then" or "else" arm of a conditional may not necessarily be assigned to the

same thread, and even within one thread they may be interspersed with statements appearing

outside the conditional. This requires a special technique for the introduction of conditional

branch instructions into the sequential threads.

To accommodate these factors, we will augment the usual sequential quads notation with

a few primitives that deal with presence bits, inter-thread synchronization, and the copying of

values not yet computed. These aspects are explicit in the notation, to allow reasoning about

optimizations such as eliminating unnecessary presence bits and synchronization; nevertheless,

the notation hides the details of how these mechanisms are actually implemented. There is

considerable freedom here, and the appropriate choice will depend on the target architecture as

well as design decisions relating to scheduling policy and parallelism: target architectures may

or may not have hardware support for the presence bits, scheduling of threads may be on a

demand driven basis (execution of a thread is not begun until at least one other thread is waiting

for a value computed by that thread) or on an eager basis (all threads for a function are begun

when the function is invoked), and threads may execute concurrently (as on a multiprocessor)

or one at a time. With our notation, all of these choices are reflected simply by choosing an

appropriate implementation of the primitives in terms of the instruction set provided by the

target.

The basic plan of this chapter, then, is to describe how to generate object code by first

showing how to produce sequential quads augmented with some special primitives, and then il-

lustrating the way these primitives can be implemented for a variety of combinations of hardware

and scheduling policy. Some of the implementations have additional partitioning restrictions

and opportunities for optimizations, and we will explore these. We will also consider lazy eval-

uation, and show how code which mimics lazy evaluation can be obtained from our framework

by introducing still further restrictions on partitioning-a side benefit of which will be an un-

derstanding of why lenient evaluation will always yield as large or larger threads compared to

lazy evaluation. Throughout, it will be clear that the quality of object code depends strongly on

which partitioning is chosen from the many partitionings which satisfy the constraint graphs.

One topic which we will not discuss is algorithms for choosing one partitioning over another;

this is an important topic for future research. Nevertheless, we will draw some conclusions

about what characterizes a "good" partitioning.
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8.1 Code Generation Concepts

The behavior of a function is defined in terms of the reductions that take place when it is invoked

in the functional quads reduction system, and so the goal of code generation is to produce target

code which performs the same computations that take place during reduction. When a function

is invoked in functional quads (via the rewrite rule R8), new bindings for each local variable

are added to the state, and succeeding reductions eventually reduce the right hand sides of

these bindings to values. At a high level, then, when the target code for a function is invoked

it must allocate storage for the local variables and then compute their values. Of course, the

target code for a function is actually several pieces of code, each of which is responsible for the

computation of a subset of the local variables, according to the partitioning computed from the

constraint graphs.

The first order of business is to use the constraint graphs to partition function being com-

piled. Not all of the vertices in the constraint graphs are relevant to code generation, for as

we saw in Chapter 6 it is often useful to include artificial vertices to aid in tracing the effects

of dependence through data structures. Once we have the constraint graphs for the function,

therefore, all artificial vertices are discarded from the graphs, preserving the constraints between

the vertices that remain. Specifically, we discard all but the vertices that represent "top-level"

values of the local variables of the function; there is a one-to-one correspondence between these

vertices and statements in the original functional quads program. The top-level vertex for 0 is

also retained, as it represents the action of returning a result to the caller.

Once irrelevant vertices have been discarded, we create a partition

{(vi, 1,VI, 2 , (V2 ,1,V2 ,2....

satisfying the remaining separation and ordering constraints in S and A. We will hereafter

assume that such a partitioning has already been performed; as we have already discussed,

this amounts to k-coloring S and topological sorting according to A, and we have outlined one

such algorithm for this in Section 7.4.1 In practice, there will be many possible partitionings

of a function, and the partitioning chosen can have a large effect on the quality of object code

produced. This implies that we may want to combine partitioning and code generation, or at

least incorporate heuristics into partitioning that anticipate the needs of code generation. We

'The algorithm given in that section bypasses the construction of A, and so to use that algorithm the artificial
vertices must be retained until after major and minor numbers have been assigned.
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will defer this point to the end of the chapter.

Each vertex in the requirement and constraint graphs represents the action of reducing

an identifier to a value, so each identifier in the partitioning will correspond to a segment of

code which computes the value of that identifier. For example, suppose we were compiling this

function:

def example x y
(a M ... ;

b f d;
cm...;
d ..

• x Y;
f ..

g const <cona,ce>; U i.e., (cons c a)
in

and the partitioning phase chose the following three threads: (b,g,), (a, f, e), and (c, d). The

object code would be the following:

function example (x, y) thread 2 of example thread 3 of example
(Initialization) (Compute value of a) (Compute value of c)
(Compute value of b) (Compute value of f) (Compute value of d)
(Compute value of g) (Compute value of e) stop
(Return g to caller) stop
stop

We assume that the caller of a function initiates and passes parameters to the thread which

computes 0, which we will always call thread 1. The initialization code in that thread allocates

storage for the local variables a through g, and then starts up the second and third threads-

exactly what this entails will be discussed later. Each of the "compute value of x" segments is

the sequential quads equivalent of the corresponding functional quads statement x a Exp.

Some of the code segments which compute the value of a variable will contain special

instructions needed to deal with multiple threads. Consider the statement b a f + d. It is not

sufficient to merely include the statement b :a f + d in thread 1, for when we reach it there

is no guarantee that threads 2 and 3 will have progressed to the points where the values of

f and d are computed. To synchronize properly, we must include presence bits in the locations

allocated for the local variables, and generate the following code:

140



force f
force d
b :* val(f) + val(d)

The statement force f tests the presence bit for f and halts execution of the thread until that

presence bit turns on.2 The val notation indicates that presence bits of f and d need to be

stripped off before their values are added, while the v subscript in the assignment statement

indicates that the presence bit for b should be turned on when the assignment is made (v stands

for value). The need to force the operands of the addition is a direct consequence of the

functional quads reduction system: an addition in functional quads (rule R4) must be preceded

by Rlb and Rlc rewrites, which in turn can only take place when the operands of the addition

have been reduced to values.

Another wrinkle in generating code for a functional quads statement arises because of non-

strictness. Again referring to example, consider the statement g = const <cons,c,e>. To

reduce g to a value we must create a two-element data structure with structure tag cons

containing c and e, and as before the values of c and e may or may not have been computed

yet. Unlike the earlier addition, though, it is not safe to force c and e; data constructors are

non-strict, and must execute even if the component values are not yet evaluated. Specifically,

it may not be possible to compute the value of c or e until after g has a value, so waiting for

either to become a value before computing g could lead to deadlock (consider the case where

the argument x, used to compute e, depends on the result of the call). We instead generate the

following code:

temp := allocate 2

temp[l] :, c

temp[2] :a e
g :WV temp

The c-subscripted assignment is a special kind of assignment which makes the left hand side

location be a copy of the right hand side location: executing force temp[l] will have the same

effect as executing force c, and a subsequent fetch val(temp [I] ) will retrieve the value of C.

'The fore statement used here should not be confused with the force operator of Henderson's transformation
(Section 2.2), although there is a connection between them which will become apparent later in this chapter.
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Notice that this is more than merely copying the contents of c into temp [1]; we really mean

that the two locations become equivalent for all time, so that when a value is stored into c it

will effectively be stored in temp [I] as well.

The c-subscripted assignment is also used for procedure calls, for like data constructors,

procedure calls are also non-strict. Thus, if the statement for g were a procedure call such as

g _ (foo(2) c) e, the code generated would be:

begincall too
Arg, : c
Arg 2 : e
invoke foo
g :=,, Rem

endcall foo

The notation here hides the details of the calling convention: the begincall primitive does

whatever is needed to begin a call for foo (e.g., allocating space for the arguments on the stack

or in registers), invoke actually transfers control to foo, and endcall performs any necessary

cleanup. Between the begincall and endcall statements are allowed the special identifiers Argi

and Res which stand for whatever locations are to be used to pass arguments and receive the

result from the function being called. The choice of a particular calling convention for each

function is a topic adequately covered elsewhere [66, 50]; the important feature for our purposes

is that the non-evaluating : ac operator is used to pass the arguments.

The upshot of all this is that memory locations in the target implementation can contain

three classes of data:

1. A value, such as an integer, boolean, (pointer to a) data structure, etc.

2. A promise to receive the value computed by some thread. In the example above, f initially
contains a promise to receive the value computed by thread 2, and after thread 2 executes
it contains a value.

3. A copy of some other location, such that forces and references to this location behave as
if they were forces and references to the other location.

Because the target implementation will need tag bits or an equivalent mechanism to indicate

which class of data a location holds, these locations will be called tagged locations. When

a tagged location is created it may be initialized to any of the three classes, but the only
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Statement ::- UntaggedLoc :a Expression I
TaggedLoc :-. Expression
TagedLoc :up Closure )
TaggedLoc : TaggedLoc I
force TaggedLoc I
begincall ProcedureName I
invoke ProcedureName I
andcall ProcedureName)
goto Label I
if Operand goco Label I
if - Operand goto Label
stop

Expression ::= Operand I allocate Constant
Operand + Operand I Operand > Operand I

Operand Constant UntaggedLoc I val(TaggedLoc)
UntaggedLoc ::= Identifier
TaggedLoc ::= Identifier[ arg, I Res I C I

Un taggedLoc (Constant]

Figure 8.1: Grammar of Sequential Quads

subsequent write that is allowed is when a thread stores a value in a location that previously

contained a promise (a location that contains a copy, however, may be implicitly overwritten

with a value when the copied location receives a value). In contrast, untagged locations which

can only contain values may be freely used within a thread; these are just ordinary memory

locations that may be read and written at will, and are typically used as temporaries (e.g.,

the location tamp in the earlier example). The use of tagged locations typically requires more

overhead than untagged locations.

With all this in mind, the complete grammar of the sequential quads notation we will use

to describe object code is given in Figure 8.1, which apart from five constructs dealing with

tagged locations is pretty much standard [3]. Three of the five tagged location constructs are

assignments, :=M, :up, and :=u, corresponding to the three classes of data that can be stored in a

tagged location. The fourth is force, which suspends execution until the indicated location holds

a value, and the fifth is val, which extracts the data from a locatioh known to hold a value. To

clarify the remaining notation: a Cc] assumes that the untagged location a contains the address

of the first word of a contiguous block of memory, and refers to the cth location beyond that
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word.3 The expression allocate c allocates c consecutive words of tagged locations and returns

the address of the first word. 5rgi and te are only legal between a begincall/endcall pair, and

correspond to the locations named by the formal parameters and 0 in the code for the function

being called. The remainder of the notation should be evident from the earlier discussion.

To generate code for a particular target machine we must choose a representation for the

three classes of tagged data (values, promises, and unevaluated copies) and convert the operators

:= ,, U =, :u , force, and val into appropriate machine instructions. Many variations are possible,

a few of which will be described in Section 8.4, but they all share the property that tagged

locations are more expensive to use than untagged locations, and that storing a value in a

tagged location (:-,) is better than storing an unevaluated copy (:mc).

8.2 Basic Code Generation

As outlined in the last section, the first cut at object code for a function is just the concatenation

of code for each functional quads statement, in the order given by the partitioning. In this

section we give the translations of each kind of functional quads statement into sequential

quads, with examples. We will not be concerned with producing highly optimized code, as

optimizations will be taken up in later sections.

Throughout this section, we will assume that Johnsson's lambda lifting transformation [42]

has been performed to lift internal definitions to top level, converting their free variables to

formal parameters. Our compilation method does not require that lambda lifting be used to

handle internal definitions; for illustrative purposes it simply has the advantage of not intro-

ducing any new mechanisms for accessing variables in outer lexical scopes. A real compiler may

choose to use Algol-style displays or some other environment structure, with the appropriate

modifications to the schemata below.

8.2.1 First Order Constructs

The schemata for translating the majority of functional quads constructs into sequential quads

are given in Figure 8.2. Most of these were discussed in the last section, and all are very

straightforward. In these schemata it is assumed that n-tuple data structures are represented

as a contiguous block of (n + 1) words, where the first word contains the structure tag and the

3This is slightly non-standard: in [3] it would refer to the cth consecutive location that follows a itself, as
opposed to the address contained in a.
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X a Y force Y
X :,a val(Y)

X a YI + Y2  force Y1

force Y2
X :V4 val) + Ial(Y2)

X - const C X :=v C

X a const (tY 1..... Y> temp :W allocate n+1
tempC0l :=, tcmp[1J := Y1

temptn] :=C Y.
X :=v temp

X a sel..i Y force Y
temp := val(Y)
force tamp Ci]
X :=, val(temp[i])

X ainiJ? Y force Y
tempi := val(Y)
temp2 :i val(templ[O)
X :fi temp2 == t

X - (F(n) Y1 .. .Y_,) Y. begincall F
Argi :=c Y

Argn :MC Yn
invoke f
X : =, val (Res)
endcall f

Figure 8.2: Basic Code Generation Schemata

remaining words the components. Depending on the type system of the source language, it may

be possible in some instances to omit the structure tag slot, with the obvious modifications to

the translation. Notice that the rule for X a Y forces Y; this is because the object code must

reduce X to a value. On the other hand, it is probably better to simply eliminate the statement

altogether by replacing all references to X by Y in the original program.

8.2.2 Higher-Order Functions

Missing from Figure 8.2 are the schemata for handling higher-order functions. There are many

ways of compiling such code; we will describe a method which employs a direct representation
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X Y1 Y2  force Y1
ap := val(Y) Representation of
entry := val(ap[0)) (F() Y1 YO
rem : val(ap[ti)
chn : val(ap[2J) fhof _entry n-i
rdy :a ram a- I
if rdy goto Li
n.ap : allocate 3

nap.[1] :-, nrm-
nap [01] : entryn-ren m - Ie

n-chn -allocate 2
n-chn[03:= Y2

n-chn[1] :- chn H.O.F. entry code for F(")
n-ap [2] :% nchn
X : n-ap function f..hof -entry (clh, last)
goto L2 begincall f

LI: begincall (entry) Argn :-c last

Arg, :=, chn temp := val(chn)

Arg2  : c Y2 Arg._i :=c temp[O]
invoke (entry) tamp := val(temp£l])

X : a val(Res) Argn-2 :=c teMp[0
endcall (entry) temp := val(temp£l])

L2:
Argi :=c temp [0)

X = const (F()) temp := allocate 3 invoke f
tempio :=, F-hof-entry temp := val(Res)
tempil] :- n endcall f
temp[2J := nil > := temp
X :M=, temp

Figure 8.3: Basic Code Generation Schemata for Higher Order Functions

of partial application values, patterned after [71]. The form of a partial application object is

depicted in the upper right corner of Figure 8.3: it is a 3-tuple containing the name of the

function, the number of further applications needed to satisfy the arity, and the arguments

already applied in the form of a linked list. Applying this to an argument does one of two

things depending on whether the arity is satisfied. If it is not, then a new partial application is

constructed with a decremented arity count and a new entry added to the front of the argument

chain (this is why the arguments in the chain appear in reversed order). If it is, the function

is invoked by sending the chain and the final argument to a special entry point created for

the function, which unpacks the chain and performs an ordinary call to the function. Having
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a separate piece of entry code for each function allows the first-order calling convention to be

customized on a per-procedure basis, while still presenting a uniform interface to the general

apply in which the identity of the function is not known at compile time.

The remainder of Figure 8.3 shows sequential quads code to accomplish all this (in the code

for application, some temporaries have been given names other than temp to aid in readability).

The noteworthy aspect of the code for application is that Y is forced, while Y2 is copied

unevaluated; this is consistent with the fact that in the reduction system YJ must be a value

before either rule R7 or rule R8 applies, while Y2 need not. Also in the figure is code for

creating an empty partial application, generated when a procedure is used as a value in the

source program. This could be generalized to directly compile a statement like

X - const (F(") Y, ... y,)

by building the appropriate partial application structure.

8.2.3 Conditionals

The translation for the conditional statement completes the description of basic code generation.

In the functional quads reduction system, conditionals serve two roles: they select one of two

values to which the conditional's left hand side is bound, and they prevent the execution of

bindings appearing in the arm not selected by the predicate. Thus we would like to surround

the code generated for the arms of a conditional with conditional branches, but in practice this

is somewhat involved because after partitioning there is no guarantee that statements taken

from a given "then" or "else" arm will be assigned to the same thread, or even in contiguous

segments in different threads.

The program in Figure 8.4 illustrates the problem. The value of r computed in the "then"

arm of the conditional is fed back into the conditional through the variable c, computed outside

the conditional. Analysis of the dependence graph shows that this program can be compiled into

a single sequential thread only if c occurs between r and a, for example, (p, r, t, q, a, b, c, s, d, 0).

We cannot, therefore, simply generate a single conditional branch which branches around the

code for r, s, and t, because they cannot occur contiguously.

The solution to this problem annotates the partitioning with control strings that indicate

the control conditions governing the execution of each statement. For each variable in the
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def condexample x y q -
{p x X > y;

a - if p then X
{r x +8;
sa c +7;
t -const <consr,s>; r

in %

else t o  q{q const <cons,xy>;

in 
so a -

b * selcons-1 a; b d
c b + 9;

d = selcons_2 a; c
in

d};

Figure 8.4: Program Illustrating Non-Contiguous Conditional

original functional quads program, we compute a control string by considering the innermost

block which encloses the binding defining it:

1. If the block is not in the arm of a conditional, the control string is the empty string.

2. If the block is the "then" arm in the binding x = if p then ... } else {...}, the
control string is Ap, where A is the control string of x.

3. If the block is the "else" arm in the binding x = if p then ... } else ... }, the con-
trol string is Ap, where A is the control string of x.

The control string of a variable x can be interpreted as a boolean formula which must be true

in order for the binding defining x to be executable; the set of statements corresponding to each

unique control string comprise a basic block as defined in [71].

Annotating the thread (p, r, t, q, a,b, c, s, d,, ) with control strings gives:

148



function cond-examplo (x, y)
(Initialization)
(Code for p - x > y)

p (Code forr a x + 8)
p (Code for t a const <cons,r,s>)

(Code for q a coust <cons,x,y>)
(Code for a a if p then t else q)
(Code for b a sel-cons-1 a)
(Code for c a b + 9)

p (Code for a a c + 7)
(Code for d a sel.cons_2 a)

:=, val(d)
stop

Notice that the fragment corresponding to code for the conditional itself (the code for a) simply

selects one variable or another as the value of a. This in turn can be expressed as a pair of

assignments with control strings mutually exclusive in p:

function cond.example x, y)
(Initialization)
(Code for p a x > y)

p (Code forr ax + 8)
p (Code fort a const <cons,r,s>)
5 (Code for q a coast <cons,x,y>)
p (Code for a a t)
5 (Code for a a q)

(Code for b - eel-cons.1 a)
(Code for c a b + 9)

p (Code for. a c + 7)
(Code for d a sel-con.2 a)
0> : -, val (d)

stop

The following algorithm converts control strings to conditional branches:

1. Find a maximal group of adjacent statements whose control string begins with the same
term (either x or 7, where x is an identifier).

2. Generate a conditional branch statement to bypass the group if the condition represented

by the common term is false. A conditional branch must force the predicate variable.

3. Remove the common term from the control strings of the group's statements.

4. Repeat steps 1 through 3 until only empty control strings remain.

This algorithm ends up processing nested conditionals from the outside in. Applying it to the

thread above yields:
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function cond-oxaple Cx, y)
(Initialization)
(Code for p - z > y)
force p
if -,val(p) goto LI

(Code for r - x + 8)
(Code fort = const <cons,r,s>)

LI: force p
if vat(p) goto L2
(Code for q - const <cons,xy>)

L2: force p
if -val(p) goto L3
(Code for a - t)

L3: force p
if vat(p) goto L4
(Code for a a q)

L4: (Code for b - sel-cons-l a)
(Code for c - b + 9)
force p
if -va/(p) goto LS
(Code for a - c + 7)

L5: (Code for d - sel-cone2 a)
0 :=,, val(d)
stop

Obviously, fewer branches are generated when the groups of adjacent statements with com-

mon control prefixes are as large as possible, and this is one criterion which should guide the

partitioning phase. On the other hand, adjacent statements with mutually exclusive control

strings can always be exchanged safely without referring to the constraint graphs, as there can-

not possibly be any dependence between them. This is particularly helpful in placing the pair

of assignment statements created for the conditional (a - t and a = q in the example above):
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function ... function ... function

(Code for p) (Code for p) (Code for p)
p (Code for r) p (Code for r) force p
p (Code for t) p (Code for t) if -'val(p) goto Li
IN (Code for q) p (Code for a - t) (Code forr)
p (Code for a = t) - V p (Code for q) (Code for t)
p (Code for a a q) P (Code for a - q) (Codefora * t)

(Code for b) (Code for b) Li: force p
(Code for c) (Code for c) if val(p) goto L2

p (Code for a) p (Code for a) (Code for q)
(Code for d) (Code for d) (Code for a - q)
0 :=, val(d) , :=, val(d) L2: (Code forb)
stop stop (Code for c)

force p
if -.val(p) goto L3
(Code for s)

L3: (Code for d)
:=,, val(d)

stop

Flow analysis techniques [31 can be used to improve the code by removing branches or

converting them to unconditional branches. Opportunities for this most often arise between

adjacent groups of statements with mutually exclusive control prefixes. To illustrate:

if -val(p) goto Li if -,val(p) goto Li
(Code for r) (Code for r)
(Code for t) (Code for t)
(Code for a a t) (Code for a - t)

Li: force p goto L2
if val(p) goto L2 Li: (Code for q)
(Code for q) (Code for a - q)
(Code for a = q) L2: (Code for b)

L2: (Code for b) (Code for c)
(Code for c) ...

The control string technique works regardless of whether the arms of a conditional are

contiguous or separated, in one thread or many.

8.2.4 Initialization

We assume that invoking a function initiates execution of its first thread, so it is that thread's

responsibility to allocate space for and initialize the local variables and to initialize the other
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threads (if any). As we have discussed, the initial contents of each local variable is a promise to

receive the value computed by a particular thread, the identity of the thread being determined

by the partitioning. Initializing a thread entails creating an environment by which it can access

local variables, formal parameters, and variables imported from enclosing lexical scopes.

To illustrate the form of initialization code, suppose we are compiling a function f which

is partitioned into three threads: (at, a2, 0), (bl,b2), and (cl,c2, c3). Suppose further that

it has two formal parameters p1 and p2, and imports the variable i from a surrounding scope

(if lambda lifting is used, i will actually appear as a formal). The beginning of the code for

thread 1 is as follows:

function f (pl, p2)
(Allocate location for at)

(Allocate location for c3)
tempt : (Null Closure)
temp2 := (Close thread 2 over p1, p2, i, at,..., c3)
temp3 := (Close thread 3 over pi, p2, i, at...., c3)
at :u tempt
a2 :up tempt
bi : utmp2
b2 :up tmp2
cl :up temp3

c2 :up temp3
c3 :up temp3
(Initiate thread 2)
(Initiate thread 3)
(Code for at)

We will discuss each of the phases of initialization code in turn.

Allocating local variable locations. The first step allocates a tagged location for each local

variable. We take no position on where each location is allocated-it may be in a register, on

the stack, or in the heap-the only restriction is that the location must continue to exist as long

as there are threads which may refer to it. A suitable lifetime analysis can be used to choose

an appropriate storage class [66, 50]. We do not show allocation code for untagged (tempo-

rary) locations used within threads, as this is accommodated through standard register/stack

allocation technology (see 1191, for example).

Creating closures. Each of the other threads associated with a given function invocation

will need access to some or all of the formal parameters, local variables, and other variables
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imported from enclosing lexical scopes, and so the addresses of these must be passed to the

threads by creating a closure. In effect, a closure is a structure containing a pointer to the code

for the thread along with enough pointers for that thread to gain access to all of the locations to

which it refers; the latter group of pointers are collectively called the environment. Packaging

the code pointer and environment into a closure allows the thread to be initiated at an arbitrary

time in the future, as is required by demand-driven scheduling. Although the code above shows

each thread closed over all formals, locals, and imports, of course it is only necessary to close a

thread over the variables to which it actually refers. Again, we take no position on the layout

of an environment, as these issues are adequately discussed elsewhere [50].

A point of notation: if x is a tagged location, then (Close thread 2 over x) means that

the environment for thread 2 contains the address of x; thread 2 can store a value in x, or

read it after some other thread stores a value. If x is an untagged location, or if we write

(Close thread 2 over val(x)), then the environment contains only the value of x, thread 2 is

limited to using the value of x as an operand, and within thread 2 x will be notated as an

untagged location. Naturally, this is only possible if x is known to contain a value at the time

the closure is built.

Storing promises and initiating threads. With the threads closed over appropriate environ-

ments, the local variables are initialized with promises (using the :up operator) and the threads

are initiated. Exactly what these two steps entail depends on the scheduling policy and on how

tagged locations are implemented, as we will discuss in Section 8.4. In demand-driven imple-

mentations, for example, thread execution is initiated by the force operator, and the "initiate"

code shown in the initialization will actually be omitted. In parallel eager implementations, on

the other hand, the initiate code will begin the concurrent execution of the other threads, but

the :up operator will have a simpler implementation.

8.2.5 Examples

We now illustrate the basic code generation method with two of the programs from Sec-

tion 3.1. The first of these is the gen-.fact.list subroutine from the make-fact-list example

in Section 3.1.2, whose functional quads equivalent and dependence graph are shown in Fig-

ure 8.5. (G.n-fact.list has been lambda lifted from the body of aake-fact _list, making

fact-liot appear as a formal parameter.) Notice that feedback dependences have been intro-

duced, but because gen-f act .list is strict in i and n feedback to them is inadmissible (see
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gen-fact-list fact.list i n =

if p then P/(a - const <nil> in el }: 1

prev w (nth iml) fact-list; ail all,
this a i * prey; 1, "
ipl = i + 1; t " a.

nil a (gen-.factlist fact-list ipl) n;
b - const <cons,this,nfl>; • .

in
b}; ,o a

S llin ,I,:
----- .-----, -.. . . .. . . ;,

t.--_..----.------.----.--.

Figure 8.5: gen.fact..list Program and Dependence Graph

Section 6.9).

One possible partitioning of this program is into the two threads (p, ip1, nfl, b, e, a, C)
and (iul,prev, this), which the reader may verify are consistent with the constraint graphs

obtainable from the dependence graph (in fact, it is possible to produce a single thread, which

will appear in a later section). This partitioning yields the following object code:
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function gen-fact.list (fact.list, i, n) thread 2 of genfact-list
(Allocate locations for p, ipI, nfl, b, a, force p
e, imi, prey, this) if val(p) goto Li

tmpi :- (Null Closure) force i
trep2 := (Close thread 2 over i, p, imi, iml :=,, val(i) - 1

fact-list, prey, this) begincall nth
p : up teapi Argl : -c imi
... Arg2 :=, fact-list
o :-p tempi invoke nth

iml :-p temp2 prey :=, val(Res)
prey :-p temp2 endcall nth
this :-p temp2 force i
(Initiate thread 2) force prey
force i this :=, val(i) * val(prev)
force n Li: stop
p : val(i) > val(n)
force p
if val(p) goto LI
force i
ipi :=, val(i) + 1
begincall gen-fact.list
Arg, : efact-list

Arg 2  : ipl
Arg3  :*= n
invoke gen-fact-list
nfl :=, val(Res)
endcall gen-fact-list
temp :a allocate 3
temp[OJ :=,, (Tag for cons)
tempi1] :=c this
temp[2] :M' nfl
b :=, temp
force b
a :=v val(b)
goto L2

LI: temp := allocate 1
temp[O] :=v (Tag fornil)
e := temp
force e
a := val(e)

L2: force a
0 := val(a)
stop

In creating this code we have applied some of the branch elimination optimizations discussed

earlier (in particular, the code computing e was permuted with one of the assignments to a),

but no other optimizations have been applied. There are ample opportunities for eliminating
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redundant force statements and the like, as discussed in the next section.

The second program we shall consider is the conditional dependence program from Sec-

tion 3.1.3, shown with its dependence graph in Figure 5.4, for which the constraint graphs

appear on page 87. This program requires at least two threads, for example (p, a, aa, c, C) and

(b, bb):

function cond-examp Wx) thread 2 of condexamp
(Allocate locations for p, a, aa, b, bb, c) force p
tmpi := (Nul Closure) if al (p) goto LI
teap2 := (Close thread 2 over p, aa, b, bb) force aa
p :up tempi b :-, val(aa)
a :=p tempi goto L2
aa :=M tempi LI: b :w. 4
c :=P tempi L2: force b
b :=p tmp2 bb :=. val(b) + 6
bb :=p trap2 stop
(Initiate thread 2)
force x
p := val(x) > 0
force p
if val(p) goto Li
a : M" 3
goto L2

Li: force bb
a :=u val (bb)

L2: force a
aa :=, val(a) + 5
force aa
force bb
c := val(aa) + val(bb)
force c
0 := % vat)
stop

8.3 Optimizations

Object code produced by the basic code generation schemata leaves much room for improve-

ment. In addition to the usual sort of peephole optimization th? t can be applied to sequential

quads, there are a number of optimizations which reduce the overhead of using tagged locations.

We discuss these below.
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8.3.1 Deferring Thread Initialization

The initialization code at the beginning of the first thread allocates storage for all local variables

and initializes all other threads, according to Section 8.2.4. While workable, this may needlessly

allocate storage for local variables defined in the arms of conditionals, some of which will never

be used depending on the predicates. Similarly, threads which only compute the values of

variables appearing within one arm of a conditional will do nothing if the conditional goes the

other way. We can save some overhead, therefore, by conditionalizing the initialization of local

variables and threads on the same predicates that control whether they will be needed at all.

Optimization 8.1 (Thread Initialization Deferment)

INSTANCE: A thread T such that the control strings of all its statements are prefixed by Ax,
where A is a control string and x a control term; and the set of initialization statements S which
closes thread T, stores the promises for the variables it computes, and initiates the thread.

ACTION:

1. Move the initialization statements S to a point immediately following the computation
of the predicate variable x corresponding to the control term x (this may move S to a
different thread).

2. Take Ax as the control string for each statement in S.

3. Strip the prefix Ax from each statement in T.

We described this optimization using the control strings discussed in Section 8.2.3; in terms of

conditional branches the assertion that the control strings of all statements of T are prefixed

by Ax says that there is a conditional branch which branches around the whole of T, Step 2

says that a branch around the statements of S is to be inserted, and Step 3 says that the branch

around the whole of thread T is removed. By describing it in terms of control strings, we are

allowing the conditional branch around S to be merged with similar conditional branches which

are likely to follow the computation of x.

Applying this optimization to genfact-list yields the following:
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function gen-Iact.list (factlist, i, n) thread 2 of gen-factlist
(Allocate locations for p, ip1, nfl, b, a, force i
e, iml, prev, this) iml :-,, val(i) - 1

tempi :- (Null Closure) begincall nth
p :-P tempi Arg, :-i irnl
... Arg 2 :, fact-list
a :-P tempi invoke nth
force i prey :-, val(Res)
force n endcall nth
p :=, val(i) > val(n) force i
force p force prey
if val(p) goto Li this :-. val(i) * val(prev)
temp2 :- (Close thread 2 over i, iai, stop

fact-list, prey, this)
iz1 :-P temp2
prey :=P temp2
this :=P temp2
(Initiate thread 2)
force i
ipl :,, val(i) + 1

Notice, too, that by eliminating the conditional branch from the second thread we eliminate all

of that thread's references to p, so that p need no longer be included in thread 2's environment.

After applying Optimization 8.1, the following optimization may be used to conditionalize

local variable allocation:

Optimization 8.2 (Local Variable Initialization Deferment)

INSTANCE: A local variable y whose control string is Az, allocated by statement s, and such
that the control strings of all thread initialization code which refers to y (i.e., during closure
creation) are prefixed by Ax.

ACTION: Move s to a point immediately following the computation of the predicate x, and
take Ax as its control string.

Even though there can be no computation which refers to y before the predicate x is computed,

there might be thread initialization code which does: if a thread refers to both y and some

other variable z computed outside the conditional governed by x. the code which closes that

thread over y and z may need to occur before x is computed. This accounts for the restriction

given above.

In gen-factlist, the variables ipl, nfl, b, a, imt, prey, and this are subject to this

optimization, with e allocated if p is false, the rest if p is true:
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function gen-fact-list (fact-list, i, n) thread 2 of gen.fact-list
(Allocate locations for p and a) force i
tempi := (Null Closure) iml :=,, val(i) - 1

p :up templ begincall nth
a :up tempi Arg, :*i mi
force i Arg2 :-c fact-list
force n invoke nth
p :-v val(i) > val W) prey :=, val(Res)
force p endcall nth
if val(p) goto Li force i
(Allocate locations for ipl, nfl, b, force prey
ill, prev, this) this :=, val(i) * val(prev)
ipl :up tempi stop
nfl :up tempi
b :-p temapi
temp2 :w (Close thread 2 over i, iml,

fact-list, prev, this)
iml :=p tentp2

prey :up temp2
this :up temp2
(Initiate thread 2)
force i
ipi :,, val(i) + 1

goto L2
Li: (Allocate location for e)

e :up tempi
temp := allocate 1

8.3.2 Eliminating Redundant Forces and Excess Copies

A force statement suspends execution of a thread until the indicated location contains a value,

and for the remainder of the thread's execution that location will contain a value. Subsequent

forces of that location are therefore unnecessary. Similarly, it is not necessary to force a location

previously assigned with a : =, assignment. In addition to removing a force when a location

is known to be a value, a := assignment can be converted to a cheaper : -, assignment if the

right hand side location is known to be a value. Finally, if a thread is closed over a location

known to contain a value, only the value need be included in the environment.

To describe these optimizations, we generalize slightly the notion of a dominator as used in

conventional compilers [3]. The conventional definition says that in a sequential piece of code

with conditional branches, a statement A dominates another statement B if all possible flow
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paths from the beginning of the code to B pass through A. Using this definition, a statement

force x can be eliminated if dominated by another statement force x or by a statement x :a,

Exp. This is a bit too restrictive, however, for it does not handle the case where all paths to

a force x statement include another force x statement, but not necessarily the same force x

statement. We therefore define value-domination as follows:

Definition 8.3 In a thread, a statement A is value-dominated for x, where x is a variable,
if all possible flow paths from the beginning of the thread to A pass through either a statement
force x or x : -, Exp.

If the code which initializes some thread is value-dominated for x, then all statements in
that thread are considered value-dominated for x as well.

Given this definition, we give three optimizations:

Optimization 8.4 (Redundant Force Removal)

INSTANCE: A statement s of the form force x that is value-dominated for x.

ACTION: Remove statement s.

Optimization 8.5 (Copy Assignment Conversion)

INSTANCE: A statement s of the form Loc :x x that is value-dominated for x.

ACTION: Replace s by the statement Loc :ffi val W).

Optimization 8.6 (Environment Assignment Conversion)

INSTANCE: A statement s of the form ULoc :* (Close thread i over..., x, ... ) that is value
dominated for x.

ACTION: Replace s by the statement ULoc := (Close thread i over..., val(x), ... ), and re-
place all occurrences of val(x) in thread i by just x.

Applying these optimizations to the code from the last section gives:

160



- 1- q _I.m • . --

function gen-fact-list (fact-list, i. n) thread 2 of gen-_act-list
(Allocate locations for p and a) iml :=fi i - 1
tempi : - (Null Closure) begincall nth
p :-P tempi Argi :-, val(iml)
a :up tempi Arg 2 :uc fact-list
force i invoke nth
force n prey :-v val(Res)
p :fi val(i) > val(n) endcall nth
if val(p) goto LI this :=v i * val(prev)
(Allocate locations for ip1, nfl, b, stop
imi, prey, this)
ipl :-P tempi

nfl :OP tempi
b :SP tempi
temp2 : (Close thread 2 over val(i),

imi, factlist, prev, this)
imi :up temp2
prey :up temp2
this :rnp temp2
(Initiate thread 2)
ipi :ffi valti) + 1
begincall gen-f act-list
Arg, :-, fact-list
Arg2 :-v val(ipl)

Arg3 : = val n)
invoke genfact.list

nfl :=v, val(Res)
endcall gen.f act.list
temp .= allocate 3
temp[O) :=v (Tag for cons)
tempi] := this
tempi2] :ffi vaL(nfl)
b :MV temp
a := val(b)
goto L2

L1: (Allocate location for e)
* :MP tempi
temp := allocate 1
temp[03 :=, (Tag fornil)
o :Mv temp

a :=,, val(e)
L2: 0 :wv val (a)

stop

and applying them to condexamp gives:
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function cond-examp (x) thread 2 of cond-examp
(Allocate locations for p, a, aa, b, bb, c) force p
tempi (Null Closure) if val(p) goto Li
temp2 := (Close thread 2 over p, aa, b, bb) force aa
p :=P temapi b :=,, val(aa)
a :=P tempi goto L2
aa :=P tempi LI: b :=v 4
c :=P tempi L2: bb :=, valb) + 6
b :Z P temp2 stop
bb :=p temp2

(Initiate thread 2)
force x
p :*, val(x) > 0
if val(p) goto Li
a :=, 3
goto L2

LI: force bb
a :ffi val(bb)

L2: aa :=v val(a) + S
force bb
c :=v val(aa) + val(bb)

:f=,i val(c)

stop

Notice that the second force bb in the first thread could not be eliminated, since it can be

reached without passing through the first force bb.

8.3.3 Converting Tagged Locations to Untagged Locations

Tagged locations include presence bits which are needed to synchronize their use among multiple

threads, and can be copied even before they have received a value. Many of a function's local

variables, however, only appear in one thread, and furthermore are always assigned a value

before use. These locations could just as well he untagged.

The following optimization should be applied only after applying optimizations 8.4 and 8.5.

Optimization 8.7 (Untagging)

INSTANCE: Local variable x allocated by statement s and which ignoring initialization code
only appears in one thread, and furthermore does not appcar on the right hand side of a
: =, assignment.

ACTION:

1. Replace every statement of the form x :=, Exp by x := Exp.

2. Replace every occurrence of val(x) by just x.
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3. Remove statement s.

4. Remove x from any statements which create thread closures (it should have only appeared
in one thread's closure to begin with).

Applying this to genfact-list gives:

function gen.fact-list (fact-list, i, n) thread 2 of genfact.list
tempi :- (Null Closure) imi := i - 1
force i begincall nth
force n Argl :fi iml
p :- val(i) > val(n) Arg2 :fi fact.list
if p goto Li invoke nth
(Allocate location for this) prey := val(Res)
temp2 :a (Close thread 2 over vali), endcall nth

fact-list, this) this :=v i * prey
this :up temp2 stop
(Initiate thread 2)
ipl := val(i) + 1
begincall gen-f act..list
Argl :=r fact-list

Arg2 := ipl

Arg3 : U. valn)
invoke gen.fact.list
nfl := val(Res)
endcall gen. act.list
temp : allocate 3
temp[O] :-v (Tag for cons)
tempil] :u, this
tempi2] :=, nfl
b : t temp
a := b
goto L2

LI: temp := allocate 1
cemp[O] :=, (Tag for nil)
a :M temp
a := e

L2: 0 :-v a
stop

and applying it to condalexample gives:
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function cond-examp (x) thread 2 of cond-examp
(Allocate locations for p, aa, bb) force p
tempi :- (NullClosure) if val(p) goto Li
temp2 :- (Close thread 2 over p, aa, bb) force aa
p :up tempi b :- va!(aa)
aa :up tempi goto L2
bb :up temp2 LI: b :- 4
(Initiate thread 2) L2: bb := b * 6
force x stop
p :-" val(x) > 0
if val(p) goto Li
a := 3
goto L2

Li: force bb
a :- val(bb)

L2: aa : a + 5
force bb
c : val(aa) + val(bb)

stop

8.3.4 Using Strictness Analysis

If a function is strict in the top-level value of some argument, it is always safe to force that

argument before making a call to that function. If we require that every call to a function

force its strict arguments before making the call, then the function body never need force

those arguments, and in fact they can be passed in untagged locations. In the worst case, this

simply moves the force statements from the function body to the callers and allows untagged

argument-passing locations. Often, however, the call will be value-dominated for some or all of

the strict arguments, so that no extra forcing need be inserted in the caller, with a resulting

net savings.

Optimization 8.8 (Argument Untagging)

INSTANCE: Function f strict in the top-level value of its ith argument (let x be the corre-
sponding formal parameter), along with all code which makes first-order calls to f.

ACTION:

1. In each first-order call to f, replace a statement of the forn Argi :=,, Exp by Argi :ff
Exp.

2. In each first-order call to f, replace a statement of the form Argi : =c Loc by the following
two-statement sequence:
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force Loc

Argi := val(Loc)

3. In all threads comprising the body of f, remove any statement of the form force x.

4. In all threads comprising the body of f, replace all occurrences of val(x) by just x.

To illustrate, here is gen-f.act-list again, where we note that gen-fact-list is strict in

i and n, and nth is strict in all arguments.

function gen-f act-list (f act.list, i, n) thread 2 of gen.Iact.list
tempi : (Nun Closure) iml := i - I
p:- i > n begincall nth
if p goto LI Argl :- im1
(Allocate location for this) force fact.list
temp2 :- (Close thread 2 over i, fact-.ist, this) Arg2 :' val(fact-.ist)
this :up temp2 invoke nth
(Initiate thread 2) prey := val(Res)
ipl :- i + I endcall nth
begincall gen.f act-list this :, i * prey
Argi : f fact-list stop
Arg2  :f ipi
Arg3 :U n
invoke gen.factlist
nfl :a val(Res)
endcall gen.Iact-list
temp : allocate 3
temp[0 : (Tag for cons)
tempEl] :- this
tmp[2] nfl
b :- temp
a :w b
goto L2

Li: temp :- allocate 1
temp[O] :-. (Tag for nil)

* a temp
a :a e

L2: :a, a
stop

Notice that aside from a force f act-list statement in the second thread, no other additional

force statements were needed.

We note that one of the first-order calls into which force statements must be inserted is the

higher-order entry code created for the function (see Figure 8.3). Passing strict arguments as

values and the entry code method for making it work in the presence of higher-order functions

are due to [14].
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8.3.5 Code Motion

One of the advantages of the sequential quads notation is that standard flow analysis and code

motion techniques (3] can be applied to it. Here is an example of how code motion can be

employed to reduce tagged location overhead.

In gen.fact-list from the last section, the tagged variable this is copied into the cons

cell created in thread 1, but is not used elsewhere:

function gen-fact-Iist (fact.list, i, n) thread 2 of gen-.act-list

(Allocate location for this) this : i * prey
teMp2 := (Close thread 2 over i, fact-.ist, this) stop
this :-p temp2
(Initiate thread 2)

tamp :- allocate 3
temp[OJ :-, (Tag for cons)
temperl :u, this
trmp[2] :v nfl
b : tamp

stop

This is a fairly common situation, as the conversion from the source language to functional

quads introduces a variable when the argument to a data constructor is an expression, and

non-strictness often requires it to be tagged. But a structure location is a perfectly good

tagged location, and so we would like the second thread above to store directly into the cons

cell, as follows:

function gen-fact-list (fact.list, i, n) thread 2 of gen-fact.list

(Allocate location for b) force b
teMp2 :- (Close thread 2 over i, fact..list, b) temp3 : i * prey
(Initiate thread 2) b [1] : temp3

stop
temp : allocate 3
temp[O] :l (Tag for cons)
tempiJ] :up temp2
temp[2 :-,, nl
b :- tamp

stop
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This has eliminated the vaxiable this, but b had to be made tagged, since thread 2 now refers

to it, and is dosed over it before it becomes a value. A better approach is to recognize that

in the original program, the code which initializes this and thread 2 can be moved to a point

just before the first reference to this:

function gen.act.ist (fact.list, i, n) thread 2 of gen-Iact.list

teamp : allocate 3 this :-, i * prey
temp[O : (Tag for cons) stop
(Allocate location for this)
temp2 :- (Close thread 2 over i, fact-list, this)
this :-o tasp2
(Initiate thread 2)
temp[1 :WC this
temp[2] :n,, al
b := temp

stop

Now this can be removed by closing thread 2 over the value of temp, which holds the pointer

to the structure:

function gen.Iact.list (fact-list, i, n) thread 2 of genlact.list

temp := allocate 3 temp3 :a i * prey
temp[O :=,, (Tag for cons) temprl) :=% temp3
temp2 :- (Close thread 2 over i, fact-list, temp) stop
temp[1) :=P temp2
(Initiate thread 2)
temp[2] :%, nfl
b :W temp

stop

The net result is the elimination of both tagged location this and the : assignment. We have

also duplicated the behavior of Heller's L-structures [28], where a data structure slot initially

points to a thread which ultimately stores a value directly into that slot.

8.4 Implementing Tagged Locations

An explanation of how to implement tagged locations completes the description of code gener-

ation. There are a limitless number of possible schemes, but we will try to illustrate a few of

167



the more interesting ones. Each scheme is described by defining the representation of values,

promises, and unevaluated copies, and giving five procedures corresponding to the five opera-

tions on tagged locations: :=,,, :=, :MC, force, and val. To avoid being tied to any particular

instruction set, we will use a "pseudo-algol" notation to describe these procedures. An example:

procedure 1oc :a, value
1l6c) - V.value

Brackets indicate indirection, so that [loc] means the location to which loc points. The contents

of a tagged location are indicated as tag.data, so the above procedure stores the tag V in the tag

part of the location to which loc points, and value in the data part. If the target architecture

has hardware support for tagged locations this might be a single instruction, otherwise it might

require some shifting and masking operations.

In taking a position on how tagged locations are to be implemented, we will also have to take

a position on the thread scheduling policy, that is, when does the execution of a thread begin

and end in relation to the execution of other threads. The object code itself sets boundaries on

the scheduling policy: the earliest time at which thread 1 of a function can begin execution is

when the function is invoked, and similarly the other threads of a function cannot begin until

their initialization code has been executed. On the other hand, the latest time a thread can

begin is when one of the locations it computes is forced, if the forcing thread is to make further

progress. We will consider various points along this spectrum.

8.4.1 Demand-Driven Uniprocessor Implementations

By uniprocessor, we mean a conventional von Neumann machine, which can only execute one

thread at a time and has no special hardware support for switching among threads. To accom-

modate multi-threaded code, then, we must either simulate multi-processor task switching in

software, or have the threads explicitly transfer control between one another. The schemes we

describe in this section all fall into the latter category, as this is likely to be the most efficient

method (in any event, the multi-processor schemes described in Section 8.4.3 can all be adapted

for the former approach, if desired).

The natural point at which to switch threads is at the force operator: forcing a location

which does not yet contain a value transfers control to the thread which is to compute that value,

with the forcing thread regaining control when the other thread reaches its stop statement. The
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Figure 8.6: Tagged Location Scheme 1

force operator is thus a kind of procedure call, where the procedure to be called is indicated by

the promise stored in the forced location.4 The resulting scheduling is termed demand-driven,

as a thread is not executed until another thread needs one of the values it computes. Demand-

driven scheduling should not be confused with lazy evaluation; the connection between the two

is the topic of Section 8.6.

In uniprocessor demand-driven schemes, a force statement invokes a thread through a form

of procedure call, and so the stop statement is compiled as a return to the point at which the

force occurred. Similarly, the invoke statement found in the function call schema is compiled

as a call to thread 1 of the function being called, differing from force only in that arguments are

passed and a result returned. Because threads are initiated by force statements, the "initiate"

portion of thread initialization (Section 8.2.4) is omitted.

The procedure call behavior of force constrains the way threads will be interleaved at run

time; in particular, the forcing thread does not regain control until the forced thread terminates.

The impact of this on partitioning is discussed in Section 8.5.

Scheme 1

The simplest scheme uses three tags to indicate which of the three classes of data a tagged

location contains:

V.value The value given by value.

P.closure A promise to have a value stored by the code to which closure points.

C.addr A copy of the location to which addr points, where that location may contain a value,
promise, or another copy.

4 In these implementations, therefore, the sequential quads force behaves exactly like Henderson's force.
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Figure 8.6 illustrates this representation. Part (a) of the figure shows four locations after the

following code sequence is executed:

W : up closure
X :-C V
y :-€ x
Y :0 c X
z :- x

The dotted line from the closure to v indicates that the closure will have a pointer to v in its

environment. Part (b) shows the same four locations after one of them is forced, and the thread

has stored a value in w and terminated.

The definition of the five tagged location operations is as follows:

procedure loc :-. value function val(loc)
[/oc] +- V.value a *-- followindir(loc)

if [a] = V.value then
procedure loc :-P closure return value

[loc] - P.closure else error

procedure loci : ioc2  procedure force(loc)
[loc] +- C.loc2 a +- followindir(loc)

if[a] = P.cosure then
call closure

The subroutine followindir follows a chain of C pointers and returns a pointer to the location

at the end of the chain:

function followindir( loc)
if [loc] = C.addr then

ret urn followindir(addr)
else

return loc

The val operator shows a test to make sure a points to a value. This test can be eliminated, as it

only detects bugs in the compiler: a val operator can only be used when the indicated location

is known to be a value, with the compiler inserting a force operator prior to it if necessary.

The assignment operators are all very cheap in this scheme, but force and val are expensive

because the chains of C pointers may be arbitrarily long. This can be remedied by a small

change to :a,:
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Figure 8.7: Variation on Tagged Location Scheme 1

procedure loci : u c 2
if [/oc2] - C.addr then

else
(loci] -- C.Joc 2

With this modification, a location containing C.addr only points to locations containing either

values or promises, never copies, as illustrated in Figure 8.7. The followindir subroutine can

then be simplified to check for a single indirection:

function followindir( loc)
if (/ocl = C.addr then

return addr
else

return c

Even with this variation, an indirection is created when a copy of a location containing a

value is made. But because the contents of a location never change once it is assigned a value,

there is no reason why the value itself cannot be copied. Again, this is a small modification

to :Wc:

procedure loci :-c o2
if [/0C2] = P.closure then

fl C.boc 2
else

Scheme 2

In Scheme 1 and its variations, a copy of an unevaluated location is represented by an indi-

rection, and the indirection remains even after the location to which it points receives a value.
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Figure 8.8: Tagged Location Scheme 2

All subsequent fetches of the copy location, therefore, must follow the indirection. This can

be eliminated, however, if we arrange for the :-,, operation to store the value in all locations

which contain copies of the location to be stored.

One way to accomplish this would be to keep a "notifier" list with each location, containing

the addresses of other locations which need copies. The operation x :=c v would add the

address of x to the notifier list for v, and the operation v : -, value would store value in w and

in every other location on the list. This is akin to the method for handling deferred reads in

-structure memory [9).

A better method requiring no additional storage is reported in [47]. The idea is to form

the notifier list by chaining together the copy locations themselves, with the head of the chain

stored in the location which originally contained the promise. An :=, operation simply splices

in the new copy location into the chain, carrying the original closure pointer to the end of the

chain, and the :a, operation stores the value in every location along the chain, beginning at

the head. We again need three tags, but their interpretation differs slightly from Scheme 1:

V.value The value given by value.

P.closure A promise to have a value stored by the code to which closure points.

C.addr A promise to have a value stored by the code to which the closure found at the end of
the C pointer chain points.

The representation is depicted in Figure 8.8 (which illustrates the same code sequences as

before), and the definition of the five operations is as follows:
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procedure loc :, value function val(loc)
old 4-- [loc] if [loc] = V.value then
[loc] *- V.value return value
if old = C.addr then else error

addr :3 value
procedure force(loc)

procedure loc :=p closure if [loc = P.closure then
[loe] 4- P.closure call closure

else if [loc = C.addr then
procedure 1oc 1 := loe2  force(addr)

[1oC11 - (10C21
if [loc2 ] 6 V.value then

[loC2] -- C.lo1C

Notice the recursive calls in :-,, and force, which follow the chains as needed. The main

attraction of this scheme is the simplicity of the val operator, which presumably is the most

frequently used of the five.

8.4.2 Implementations Requiring Only Two Tags

The main drawback shared by the schemes presented in the last section is that a location

may have one of three tags, resulting in fairly complex definitions of some operators tagged

operators. Here we present two schemes which only require two tags. Any scheme will require

at least two tags, of course, because any implementation of a non-strict programming language

will have to distinguish between evaluated and unevaluated expressions.

Scheme 3

In the basic code generation schemata given in Section 8.2, the left hand sides of :=d and

operators were always local variables, while the left hand sides of : -, operators were always the

elements of data structures or arguments to procedures.' If we stick to these schemata, then,

local variables can only contain values or promises, and structure elements and arguments can

only contain copies; locations for local variables need only one bit to encode the tag, while other

locations need none at all.

The appearance of this representation is the same as in Figure 8.7, but we need to translate

the :-c, force, and val operators two different ways, depending on whether their operands are

local variables or arguments/structure elements:
5The structure tag slots of data structures (offset 0) appear on the left hand sides of :-, operators, but since

these locations always receive a value immediately upon creation we can treat them as untagged.
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procedure varoc :=, value function val(strloc)
[varloc] +- V.value if [strloc] = C.addr then

if [addr] = V.value then
procedure varloc :u, closure return value

[varloc] 4-- P.closure else error
else error

procedure stroc :=u varloc
[strioc] 4-- C.varloc procedure force(varloc)

if [varloc] = P.closure then
procedure strlocl : a. strloc2 call closure

[strioci] 4- [strloc2 ]
procedure force(strloc)

function val(varloc) if [strloc] = C.addr then
if[varloc] = V.value then if[addr] = P.closure then

return value call closure
else error else error

(varloc refers to a local variable location, while strloc is a structure element or argument loca-

tion.)

This scheme has the overall most efficient implementation of the five operators: there is no

looping, and if error-checking is eliminated only the force operator tests tag bits (again, the

error-checking in the code really only detects compiler bugs). The main disadvantage is that it

precludes Optimization 8.5 (Copy Assignment Conversion), because it violates the restriction

that structure locations and arguments can only contain copies. The code motion optimization

illustrated in Section 8.3.5 is also ruled out.

This scheme is essentially that used by the Yale ALFL compiler [14], and is also the same as

what goes on in a graph reduction implementation such as the G-machine LML compiler [43].

Scheme 4

Another two-tag scheme has no restrictions on what any tagged location may contain, but

instead eliminates the need for a copy tag by using a promise to simulate a copy. To perform

x :-, , a small thread which forces v and stores its value into x is created, and a promise

for that thread is placed in x. Forcing x, therefore, also forces v, and a subsequent val(x) will

obtain the value of v. Since there are now only promises and values, only two tags are needed.

This scheme is illustrated in Figure 8.9, and the code is as follows:
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Figure 8.9: Tagged Location Scheme 4

procedure loc : -= value function val( loc)
[oel +-- V.value if[locl = V.value then

return value

procedure loc : =P closure else error
[loc] +- P.closure

procedure force(loc)
procedure loci :=c loc2 if[loc) = P.closure then

[loci] - P.((). call closure
force(loc2 )
[1oC1 -- [loC2I)

A drawback of this scheme is the overhead of an extra procedure call when a copy is forced.

It also fails to implement completely the definition of an unevaluated copy, which says that

if x contains a copy of v then all operations performed on x should behave as if they were

performed on w. In particular, if a value is stored in w then a subsequent val(x) should fetch

v's value, without having to perform a force operation on x. In the present scheme, storing a

value in v does not affect the promise stored in x, so a force of x is needed before any attempt

to do val(2). This is not a problem, however, for even with all the optimizations described

earlier copies are only stored in structure elements and arguments, and we never generate code

which fetches the value from such a location without first forcing it.

The code generated from Henderson's force and delay transformation [29] often resembles

this scheme, for if a delayed expression is just an identifier the thread corresponding to that

delay is just like a copier thread as defined above.

8.4.3 Multiprocessor Implementations

Moving from a uniprocessor to a multiprocessor implementation does not appreciably aikect

the way tagged data is represented; all of the schemes described above can be adapted for
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multiprocessors without much change. If threads are to execute concurrently, however, there

must be some changes in the scheduling policy, for the policy described earlier results in only

one thread executing at a time. One possibility is to retain demand-driven scheduling but relax

it so that threads can start a little earlier, and so that the forcing thread can resume execution

a little earlier as well. Another possibility is to abandon demand-driven scheduling in favor of

eager scheduling.

Parallel Demand-Driven Scheduling

In the demand-driven schemes described for uniprocessors, a forcing thread suspends until the

thread it forced terminates execution, even if the forced thread stores a value in the location

long before it terminates. One way to obtain some concurrency, then, is to have the forcing

thread initiate the concurrent execution of the thread named in the promise, and then wait

until a value is stored in the forced location. When a value is stored, the forcing thread and

the remainder of the forced thread can proceed in parallel. Wheit a thread reaches its stop

statement, it just dies rather than returning to the thread which initiated it.

Any of the schemes described earlier can be adapted to this scheduling policy simply by

modifying the force operator. For scheme 1, the modification would be as follows:

procedure force(loc)
a - followindir(loc)

if [a] = P.closure then
initiate closure
wait until [a] = V.value

The invoke statement used for function calls needs a similar modification: it should initiate the

concurrent execution of thread 1 of the called function, then wait for Res to receive a value.

Unfortunately, allowing concurrent execution of threads opens up the possibility that a

second force of a location may occur between the time the first force initiates the corresponding

thread and the time the location receives a value. With the code for force above, this results in

two concurrent executions of the same thread, a wasteful and possibly hazardous occurrence.

The solution is to include a bit in each closure which indicates whether the closure has already

been invoked:
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procedure force(loc)
a +- followindir(loc)
if [a] = P.losure then

begin critical section
if -Ezecuting?(closure) then

Ezecuting?(closure) 4-- True
initiate closure

end critical section
wait until (a] = V.value

Notice the use of the critical section to avoid the race that would result if two force statements

could test the closure's bit at the same time (all that is really needed is an atomic test-and-set

instruction). We have to associate the bit with the closure rather than with the forced location

because the same thread can be forced through two different locations, if the thread computes

more than one local variable. An analog of the executing bit can be found in every parallel

demand-driven functional language implementation (see [701 and [21], as well as the d-union

operator in [57]).

"Sparking"

The parallel demand-driven scheduling policy given above gains some concurrency, but there is

still a lot of room for improvement. Consider a common code sequence like:

force y
force z
X :-V val(y) + Val(z)

Under the previous policy, there will be no concurrency at all between the thread for y and the

thread for z, except to the degree that the thread for y computes other values after storing the

value of y. There is no reason, however, why the two threads cannot be started at the same

time. To achieve this, we define an operator called spark that performs the initiating part of

force but not the waiting part (the term spark is due to [21]):
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procedure spark(loc)
a +- followindir(loc)
if [a] = P.closure then

begin critical section
if -Executing?(closure) then

Executing?(closure) *- True
initiate closure

end critical section

Using spark we can rephrase the earlier code to completely overlap the computation of y and z:

spark y
spark z
force y
force z
x : vat (y) + vat W)

A more aggressive use of spark tries to move the spark statements to the earliest point

possible while still insuring that every location that is sparked is eventually forced. Within

a thread, this says that a spark x statement can be moved to the earliest point where it is

post-dominated by a statement force x. Post-domination [4] is the mirror image of domination:

a statement A is post-dominated by B if every control flow path from A to the end of the thread

also includes B.

Eager Scheduling

Even with liberal use of spark, demand-driven scheduling policies will only initiate a thread if

there is (or will be) at least one force of that thread, i.e., at least one of the values the thread

computes is definitely needed by some other computation. In contrast, any scheduling policy

which may initiate a thread even if none of its values are ultimately used is called an eager

policy.

The simplest eager scheduling policy initiates every thread as soon as possible, that is,

immediately following the initialization code which creates the closure for it and initializes the

local variables it computes. Since every thread starts executing right after creation, when a

location is forced the thread which is to compute its value will already be executing concurrently,

if the location does not already contain a value. This considerably simplifies the job of the force

operator:

178



procedure force(loc)
a +- followindir(loc)
wait until [a] = V.value

The force operator does not even need to examine the promise stored in an unevaluated location,

and so there is no reason for :-p to store a promise at all, but instead it just needs to clear the

presence bit. In dataflow architectures [54, 5] and in Iannucci's architecture [40] this simplified

force and the val operator are combined into a single instruction-essentially it is just a blocking

read which waits for the presence bit to turn on.

Because eager scheduling may result in executing threads none of whose values are forced,

it is sometimes termed "speculative" [18]. We stress, however, that it is only speculative in the

sense that it may do more work than is necessary to produce the program's ultimate answer; in

other words, it may do some work not done by a lazy evaluation of the same program. Eager

scheduling does not do any extra work relative to lenient evaluation (Section 4.6), since condi-

tional branches which prevent the execution of the unselected arm of a conditional expression

are still obeyed. As we will explore in Section 8.6, even demand-driven scheduling may do extra

work relative to lazy evaluation if the program is not specially partitioned for laziness.

8.5 Partitioning for Uniprocessor Demand-Driven Execution

Implementing force as a procedure call (Sections 8.4.1 and 8.4.2) is a very efficient method

for uniprocessors, but its correct operation imposes additional constraints upon partitioning

beyond those embodied in the constraint graphs. Now Theorem 5.13 shows that satisfying

the constraint graphs is sufficient to guarantee that there is always an interleaving of the

threads which satisfies the requirement relation for a given input to the program. Whether this

interleaving is achieved, however, depends on the behavior of force.

During execution, the force operator dynamically interleaves threads, by transferring control

to another thread when an uncomputed location is forced. In order to achieve an arbitrary

interleaving, then, force must be able to transfer control to an arbitiary thread. More precisely,

control transfers to a runnable thread, either beginning the execution of a recently initialized

thread or resuming a thread which recently suspended while forcing a location that now contains

a value. A force which suspends the current thread must be able to transfer control to at

least one of these runnable threads, otherwise the computation deadlocks. Executing a stop

statement causes a similar transfer of control.
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The parallel schemes for implementing force (Section 8.4.3) can accommodate an arbitrary

interleaving, for when a thread suspends (indicated by the wait statement in the definition of

force) any of the other threads may continue in parallel. Similarly, in a uniprocessor simulation

of a parallel method the suspending thread can select any of the runnable threads maintained in

the simulated task queue. The uniprocessor demand-driven schemes of Sections 8.4.1 and 8.4.2,

on the other hand, are much more limited: when a thread suspends it always goes to the

beginning of the thread indicated by the forced location's promise, resuming only when that

thread terminates. This rules out certain kinds of interleavings, as illustrated by the following

program:

def nest x *

{a x + 2;
b a + 3;
c a + 4;
d a + 5;
e b + 6;
f a d;
g f a;
h f c;
i h g;
in

If this program is partitioned into the two threads (e, h, i, C) and (a, b, c, d, f, g), the following

code results:6

function nest (x) thread 2 of nest
(Initialize b, c, e, f, g) force x
force b a := +i/(z) 42
o := valb) + 6 b :ffi a + 3
force f c :,, a + 4
force c d :- a + 5
h := val(f) * val(c) force e
force g f :=, val(e) * d
i := h * val(g) g :- val(f) * a

: i, i stop
stop

Using one of the parallel schemes of Section 8.4.3, the dependence among b, e, f, and h will cause

a "coroutining" execution path, as illustrated in Figure 8.10a. When the first thread starts, the
6 0f course, this simple program would normally be partitioned into only one thread-the partitioning shown

is only for purposes of illustration.
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Figure 8.10: (a) "Coroutining" Interleaving; (b) Proper Partitioning for Uniprocessor Demand-
Driven Implementations

force b statement immediately transfers control to the second thread, which suspends at the

force e statement. But since b has been computed, the first thread can resume execution until

it forces f, at which point the second thread can resume and terminate, which then allows the

first thread to complete as well.

Now consider the execution of this program using one of the demand-driven uniprocessor

schemes of Section 8.4.1. As before, the first thread suspends at the force b statement and

* calls the second thread. When the second thread reaches force e, there is a problem: the

thread which is to compute e has already been activated, and the second thread has no way

of transferring control back to it. If the second thread simply invokes the closure stored in e

it will effectively create a duplicate instance of the first thread, so that e, h, i, and C' will

be computed twice. This is clearly not satisfactory, especially considering how the duplication

would multiply in the presence of recursion.

To prevent duplicated computation in uniprocessor demand-driven implementations, the

force of an uncomputed location must always transfer control to a thread that is not already

suspended. We now prove a sufficient condition on a partitioning to irsure that this is the case,

* but first we need to introduce some terminology to help describe execution under demand-driven

uniprocessor schemes. We distinguish between thfreads, which are static pieces of code com-

prising function definitions, and thread instances, which are the dynamic instances of threads
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created each time a function is invoked at run time. Let 11 be an uncomputed tagged location,

which therefore contains either a promise or a copy of some other uncomputed location 12. De-

fine I' to be either 11 if the former, or l if the latter. In other words, l is the location found by

following the chain of copies, if any, until a location containing a promise is found. When 11 is

forced, l is the location which actually appears on the left hand side of :,, in the forced thread

instance. The thread instance forcing 11 is the parent of the thread instance which stores I',

and location l' is the requestor of the latter thread instance. If a thread computes the value

of more than one tagged location, then different instances of it may have different requestors.

Finally, ancestor is the transitive closure of parent.

Lemma 8.9 In uniprocessor demand-driven implementations, a thread instance which forces
an uncomputed location I transfers control to the thread instance containing a statement of the
form I' :,, Exp.

Proof. True because of the implementation of force as a procedure call.

Lemma 8.10 Given a statement force 1, let s be the next statement executed by the thread
containing the force. Then in any implementation, uniprocessor demand-driven or not, thread
instances are interleaved such that s is always executed after the statement I' , Exp.

Proof. The definition of force says that force I suspends the current thread until a value is

stored in 1'. 1

Theorem 8.11 If a partitioning is consistent with the constraint graphs, and furthermore in a
demand-driven uniprocessor implementation no thread instance executes a force statement after
storing a value in its requestor, then no thread instance forces an ancestor.

Proof. At any point during demand-driven uniprocessor execution, the set of thread instances

consists of an active thread instance and its ancestors, where each ancestor is suspended at a

force statement. Now suppose a thread instance (call it thread instance n) forces an ancestor

n generations back by forcing the location 1A. A snapshot of the thread instances is as shown

in Figure 8.11, which shows all ancestors from the instance beihg forced (thread instance 1)

through the instance doing the forcing. The uniprocessor demand-driven implementation of

force results in the execution path as shown by the dot-and-dashed 're. Now the theorem says

that no thread instance executes a force after storing its requestor, so the statements storing

l2 through I, must follow the force statements in thread instances 2 through n. Furthermore,

while l is not necessarily the requestor of thread instance 1, it nevertheless must follow the
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statement force 12; if it did not, the force 1A statement in thread instance n would simply fetch

a value rather than trying to force an ancestor. These precedence relations are shown by the

downward-pointing solid lines in the figure. But by the previous lemma, in any interleaving of

these threads execution of each statement s, must follow the statement storing 14, and Sn Must

follow the storing of 1A; this is indicated by the upward-pointing solid lines. No interleaving can

simultaneously satisfy all of these precedence relations, so the partitioning cannot be consistent

with the constraint graphs. Contradiction.

On the basis of this theorem, then, to partition for uniprocessor demand-driven execution

we must insure that no thread instance executes a force statement after storing its requestor.

It is sufficient, therefore, to verify statically that no thread can execute a farce statement after

executing an :a, statement. This can be achieved either by a suitable partitioning algorithm,

or by splitting the threads produced by the usual partitioning algorithm. We discuss the latter

approach in further detail.

To split a thread for uniprocessor demand-driven execution, consider all execution paths

from the beginning of the thread. If a force statement follows a : a assignment, split the thread

somewhere between the force and the : a,,. Note that an invoke statement must be treated as

if it were a force, since it effectively forces Res. Continue this process on the remaining threads

until no further splitting is needed. When a thread is split in two, there may be untagged

local variables which are defined in the first thread and referenced in the second; these must

be converted back to tagged locations by replacing the :- assignment by :-,f, inserting val()

as needed, and by forcing the location at the beginning of the second thread. This force is

perfectly safe, as it simply reconstructs the sequential ordering of the original single thread.
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Applying the splitting algorithm to the earlier example program, nest, yields the following

four threads, whose execution is depicted in Figure 8.10b.

function nest x) thread 2 of nest thread 3 of nest thread 4 of nest
(Initialization) force b force a force x
force f e :- , va(b) +6 force d a :-, val(x) + 2
force c stop force e b :,, val(a) + 3
h :- val(f) * val(c) f :, vat(e) * va/(d) c :=, val(a) + 4
force g g :%, val(f) * val(a) d :ffi val(a) + 5
i :- h * val(g) stop stop
0 :=,i
stop

Notice that a and d were converted to tagged locations. There is some freedom in choosing the

split points; if the second thread had been split before the statement computing d, then d could

have remained untagged.

The preceding algorithm assumed that any : assignment might store the requestor of the

thread. In fact, certain :-,, assignments are easily shown "safe" in that they cannot possibly

store the requestor. Assignments to i-gi fall into this category, as do assignments which

initialize structure slots, where the pointer to the structure has not been stored in a tagged

location (no other thread instance could possibly have access to the structure slot). These

assignments can be ignored when finding split points. Finally, we always know that the requestor

of thread 1 for any function is the location 0, and so thread 1 need only be split at points

following the assignment to C. In the previous example, this would have allowed three threads

instead of four. These improvements also show that both examples given in Section 8.3.3 will

run on uniprocessor demand-driven implementations.

8.6 Lazy Evaluation

Because lazy evaluation in functional quads is just a special case of the lenient rule for selecting

a redex (Section 4.6), producing object code which mimics lazy evaluation is just a special case

of lenient code generation. In lazy evaluation, a variable is not reduced to a value until it is

known that its value is needed for the final result of the program. If a thread is executing,

therefore, it should only initiate those threads which compute values known to be required

for that thread's termination; a demand-driven implementation of tagged locations must be

employed. Furthermore, if we force a thread because we need the value of some variable x,
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that thread must not compute anything not needed to compute the value of x, for there is no

guarantee that those extra values will be required by the final answer. This implies a finer

partitioning beyond what is required for lenient evaluation, so that each thread only computes

a single value (perhaps along with other values always needed to compute that value). In other

words, each thread should only compute the value of one tagged location, and its computation

must certainly require the values of all untagged locations computed in the thread.

To achieve this extra partitioning, we need only appeal to the dependence graphs which we

have already computed. If a variable is untagged in a thread, then the only dependence arcs

leaving the corresponding vertex of the dependence graph will be to other vertices in the same

thread. Conversely, the tagged location it computes will have some outgoing arcs to vertices

in other threads. To satisfy the conditions for a lazy thread, we wish to find a region in the

dependence graph such that there is only one vertex with outgoing arcs to vertices outside the

region, and such that all arcs contained within the region are certain arcs. These are exactly

the strict regions defined in Section 7.2.2, where it was shown that there are no separation

constraints between the vertices of such a region. A correct partition for lazy code is produced,

therefore, by finding maximal strict regions within the dependence graph. One simple algorithm

simply finds a strict region for every vertex with more than one outgoing arc or with a single

outgoing potential arc; vertices with a single outgoing certain arc are included in the same region

as the vertex to which they point. This corresponds to the standard delay rule used in existing

lazy compilers, as it has the effect of assigning to a separate thread the argument expressions to

non-strict functions and each right hand side of a letrec block.' A more sophisticated algorithm

could potentially find larger strict regions; see the discussion in Section 7.2.2.

Once the graph has been partitioned into strict regions, it is ordered and compiled as usual.

Because these lazy threads store but a single tagged location, extra splitting for uniprocessor

demand-driven scheduling is never required.

8.7 Partitioning Heuristics

Throughout this section we have assumed that the graph has been partitioned and ordered

before code generation takes place, but by now the reader should realize that the quality of

'Conditionals require special treatment in order to truly duplicate the standard delay rule. For instance,
the algorithm described will always generate one or more separate threads for the arms of the conditional. The
threads which compute the final value of each arm could be merged with the thread containing the left hand side
of the conditional statement.
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object code can vary dramatically depending on the partitioning and ordering chosen. Usually

large threads are more desirable than small (this is not so clear in parallel implementations),

but there are other ways that quality is affected. We list below some partitioning heuristics

that can lead to improved code.

" It is generally undesirable to mix instructions from different basic blocks as it leads to
excessive conditional branching. On the other hand, it is desirable to embed both arms
of a conditional in the thread containing its left hand side.

" Vertices with only one outgoing arc should be placed in the same thread as their target
so that untagged locations can be used. Preferably they should be placed as close to their
successors as possible to minimize the variable's lifetime.

" Arguments of data constructors and non-strict procedures should be placed before the
call to minimize the use of :=, assignments.

" The number of arcs crossing thread boundaries should be minimized, to reduce the number
of tagged locations.

Finding efficient algorithms which incorporate these and other heuristics is a topic for future

research. Some of these have already been addressed by others in the context of both strict and

lazy evaluation [60, 61, 331.
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Chapter 9

Conclusion

We have presented a method of compiling sequential code from non-strict functional languages

in which non-strictness is treated separately from laziness. We take the view that the crux of

producing sequential code is in taking ordering decisions at compile time, and in recognizing

when those decisions must be made at run time. The first step infers relationships between

the subexpressions of a program by analyzing data dependences. We then convert the data de-

pendence information into constraints upon sequential code generation, where the constraints

indicate not only relative ordering of subexpressions but also which subexpressions may not be

ordered at compile time. From there, we are able to pursue a variety of code generation strate-

gies, including producing lenient code and lazy code, for a variety of target implementations.

Every step of the compilation process has a counterpart in a formal system which captures the

necessary constraints upon code generation, so that there is a standard by which any particular

compilation algorithm can he judged for correctness and effectiveness. A key component of

this formal system is the functional quads model of functional program execution, which has

interesting properties in its own right.

We conclude by discussing the relationship of our work to other current research, and with

some remarks about where our research leads.

9.1 Relationship to Other Work

To the best of our knowledge, this thesis represents the first attempt to consider non-strictness

and laziness separately in the context of sequential code generation. There are, however, several

research efforts which have some overlap with aspects of our work; we discuss these below.
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9.1.1 Dataflow Languages and Compilers

The programming language Id [53], which arose out of dataflow work of Arvind et al. at MIT [5,

7], is one of the few (if not the only) examples of a functional language with non-strict, but non-

lazy, semantics. We have drawn heavily from the work of this group, particularly in exploring

the expressive power of non-strict non-lazy functional languages, and in compiler technology

for dataflow architectures [71]. As we mentioned earlier, the operational semantics for Id given

in [53] and [8] was the inspiration for functional quads, the theoretical foundation of our lenient

compilation technique.

Compiling Id for dataflow architectures can be viewed as a special case of our work: in

our terminology, dataflow code is concurrent, eager object code where every subexpression

is assigned to a separate thread. Since every thread is of size one, dataflow compilers need

not be concerned with constraints upon partitionibg,, nor with ordering constraints, and so

dataflow compilation is largely independent of the present work. On the other hand, to control

the resource requirements of dataflow programs executing on parallel architectures it is often

necessary to sequentiaize portions of the code [6]. The kind of dependence analysis performed

here then becomes useful in insuring that such transformations preserve the semantics of the

program.

9.1.2 Sarkar and Hennessy

Sarkar and Hennessy describe a technique for partitioning dataflow code into "macro-dataflow"

nodes, which are essentially sequential threads [60, 61]. Their source language is the inter-

mediate form IF1 (63], a functional language with strizt semantics. Because IF1 is strict, a

total ordering on the subexpressions of the program can be found at compile time based on the

syntactic structure (see Section 3.4). In other words, there are no separation constraints, and

they are free to partition the program at will. They develop techniques which try to minimize

the amount of inter-thread communication performed by the partitioned program.

9.1.3 Serial Combinators

Hudak's serial combinators [33] represent another method for partitioning functional programs

into sequential threads. Like us, Hudak starts with a non-strict language, but unlike us, Hudak

only considers lazy semantics. Essentially, he starts with the threads produced by a lazy com-
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piler, and partitions them further so that the resulting threads have no internal parallelism. He

performs some analysis to balance the thread scheduling overhead against the amount of com-

putation performed in each thread; in this respect his work is similar to Sarkar and Hennessy's

above.

9.1.4 Path Semantics

The path semantics developed by Bloss and Hudak [13] is an alternative approach for studying

the order of subexpression evaluation in functional languages. Its goals are therefore very

similar to the requirement framework we developed in Chapter 5, but their work has a very

different structure. Whereas requirement graphs are a partial order on the subexpressions of a

program, path semantics yields a set of total orderings, each element of the set corrt. ;,onding

to a possible sequence of subexpression evaluations that might occur at run time. Because their

representation is a set of total orderings, they can preserve the correlation information that

requirement graphs do not: the set of paths computed for a function will simply not include

total orderings that correspond to impossible combinations of potential requirements. On the

other hand, this seems to imply that the path representation is less compact. Another difference

is that while requirement graphs are defined in terms of observing the behavior of programs

during execution, path semantics is defined directly in terms of axioms for primitive functions.

In this rio.ect, path semantics is most similar to the dependence graphs defined in Chapter 6,

which are also based on static program properties. Currently, path semantics has no special

mechanisms for dealing with data structures.

Bloss and Hudak intend path semantics to be used in a variety of optimizations for lazy func-

tional programs, particularly the elimination of redundant forces and unnecessary delays [14].

It would be interesting to see if path semantics can serve as an alternative basis for construct-

ing constraint graphs. One potential difficulty here is that path semantics assumes lazy, not

lenient, evaluation; perhaps this could be remedied by a different choice of axioms for primitive

functions. Conversely, it would be interesting to see if requirement/dependence graphs could

serve as an alternative basis for the types of optimizations envisioned for path semantics.
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9.2 Directions for Future Research

Throughout the thesis we have pointed out areas in wh;hi the theory or practice of lenient

compilation could benefit from additional investigation. We summarize these areas here.

9.2.1 Extensions to the Formal Model

The main limitation of the requirement model developed in Chapter 5 is that it does not preserve

inform tion about correlations between potential requirements. In general, there will be many

subsets of the potential requireme-tts which are admissible but nevertheless cannot occur at

run time. The most obvious example arises from conditionals: a conditional expression results

in two potential dependence arcs, one from the output of each arm, but for no input to the

program do both dependences occur simultaneously, nor for any input do neither occur.

It is not yet known whether the lack of correlation information will have a significant impact

on the quality of code generated from our techniques; more experience is needed. It would also

be worthwhile to see if the requirement model can be cleanly extended to include a notion of

correlation. As we mentioned earlier, the path semantics of Bloss and Hudak [13] may have

some relation to such a model.

9.2.2 Dependence Analysis

One of the chief strengths of our method is that the dependence graph framework is very general,

in that it can exploit dependence information gained from a variety of analysis techniques. The

ones we have explored in Chapter 6 are mainly simple syntactic methods, together with well-

known strictness analvis techniques. Much more work is needed to investigate other ways

of obtaining dependence information. We suspect that quite a bit of conventional imperative

compiler technology can be harnessed, particularly subscript analysis [15] and other flow analysis

techniques [3].

In Chapter 6 we have only scratched the surface in the area of dependence analysis for

data strur-tures. The multi-point approach seems very promising Ps it provides a unified frame-

work in which different data types can be tracked with differing degrees of precision. Finding

appropriate vertex sets for different types and developing methods for their analysis seems to

be a very important area of research. We suspect that the multi-point model can also lead

to a greater appreciation of the relationships between the multitude of strictness analyzers for
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non-flat domains that have recently proliferated [77, 39, 27].

9.2.3 Constraint Computation and Partitioning

Like most NP-complete problems, computing constraints from requirement/dependence graphs

is a problem whose solutions can likely be continually improved over time. More work is needed

to progress beyond the simple-minded algorithms presented here.

The formulation of code generation in terms of constraint graphs is both a blessing and

a curse. On the one hand, it provides maximal freedom to a compiler, as partitioning is

constrained only by what is necessary to implement the semantics, and is not influenced by the

structure of the analysis which revealed those con~traints (contrast this with the G-machine

compiler [41, 43], in which the generation of code is inextricably entwined with the recursive

descent through the source code). On the other hand, this freedom presents many more choices

to the partitioning phase, which must deal with the interactions between the constraints, thread

size, and inter-thread communication in choosing the best partition for a particular program.

Investigating and evaluating heuristics to guide the partitioning phase presents a wide field for

future effort. The work of Sarkar and Hennessy [61] may have some relevance.

9.2.4 Code Generation

The code generation techniques described in Chapter 8 are fairly straightforward, and do not

attempt to take advantage of the many opportunities available for peephole optimization and the

like. A lot of conventional compiler technology seems applicable here, particularly in the area of

analyzing lifetimes to optimize the use of storage [50]. Most of the optimizations presented only

considered program flow within a given thread. Flow analysis could be employed to analyze

interactions between threads, exposing more opportunities for optimization [13]. All of these

are fertile ground for further exploration.

9.2.5 I-Structures

I-structures are a non-functional language construct for array data structures which have sig-

nificant advantages over purely functional arrays [8]. Although I-structures are .-ot functional,

I-structure languages can still be described by a -onfluent reduction system similar to functional

quads (as we have mentioned, functional quad itself was actually inspired by a reduction system
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for I-structures), and so there is every reason to believe that the requirement graph framework

developed in Chapter 5 can be extended to accommodate them.

On the other hand, dependence analysis of I-structure languages is likely to be consider-

ably more difficult than for functional languages, because unrestricted use of I-structures leads

to procedures which have side-effects. Strictness and its analysis are no longer valid criteria

ror deciding when the arguments to a procedure can have an effect on other computations in

the caller; a different criterion that detects the relationship between argument computation

and side-effects is needed (see also the footnote on page 28). With functional data structures,

the computation which computes a given structure element is identifiable at the point of con-

struction, but this is not so for I-structures. It is much more difficult, therefore, to decide

the dependence relationships between various structure operations in a program. Finally, we

note that because the writers of I-structure locations are not identifiable at the time of their

construction, I-structure languages are non-sequential, and demand-driven evaluation is ruled

out.

We should point out, however, that if a programming methodology is employed which

restricts the non-functional uses of I-structures to the internals of a handful of functional ab-

stractions, the remaining functional portions of a program can be analyzed exactly as if the

language itself were functional. This is in fact the methodology advocated in [8].

9.3 Concluding Remarks

We believe the main contribution of our work is in providing a method of compiling functional

languages which deals with non-strictness and laziness separately, so that the effects of non-

strictness on object code can be isolated from the effects of laziness. This is valuable for two

reasons. One is that it allows compilation which preserves non-strictness but not laziness,

achieving more efficient code for programs which do not require the additional expressive power

of lazy evaluation. The second is that it improves the understanding of how non-strictness

and laziness are individually responsible for certain kinds of expressive power, and how they

individually contribute to overhead in implementations. In particular, we have shown how a

great deal of the overhead is a consequence of arguments to a function call depending on partial

resulis from that call.

An important aspect of our work is that it tries to separate the aspects of object code

192



quality that are traceable to a particular compilation algorithm and those that are inevitable

consequences of the programming language semantics. This separation was accomplished by

defining requirement graphs purely in terms of program behavior according to the operational

semantics, and extracting the miniiaal constraints upon object code from the requirement

relations. These theoretical ideals could then be used as standards by which to judge the

dependence analysis, constraint computation, and partitioning algorithms uied in a particular

compiler. We do not claim to have provided the ultimate algorithms in any of these categories,

only that their theoretical basis is sound, and that there do in fact exist algorithms which

are practical and effective. We also achieve separation between the algorithms used to obtain

dependence information and the algorithms which convert this information into partitioning

constraints, and between the various code generation options that are possible for non-strict

object code.

Finally, we believe that 'functional quads and its associated theory is an important step

toward providing a common vantage point from which to understand a variety of functional

language implementations, be they on sequential or parallel architectures, with lenier t or lazy

semantics, on von Ne':mann, dataflow, or reduction machines. Its main strength is that it ex-

poses compilation and semantic issues such as sharing, order of evaluation, and the need to test

whether an expression has become a value, while abstracting away from the details of how these

are achieved in the implementation. Thus functional quads serves as a universal abstraction of

functional language implementations, just as sequential quads serves as a universal abstraction

of von Neumann architectures.
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